Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 2 | 282--290
Tytuł artykułu

Performance estimation of blended nano-refrigerants’ thermodynamic characteristics and refrigeration efficacy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of nanoparticle-infused blended refrigerants is essential for achieving an effective sustainable system. This investigation analyses the efficiency of three nano-refrigerants (CuO-R152a, TiO2-R152a and TiO2-R113a) on the basis of the thermal performance and energy usage of the compressor using MATLAB-Simulink in the vapour compression refrigeration cycle with a two-phase flow domain. Also, nanoparticle volume concentrations of 0.1%–0.5% in the basic refrigerants are investigated. In the Simulink model, the outcomes are calculated mathematically. Using the NIST chemistry webbook, the thermo-physical characteristics of base refrigerants were calculated, and different numerical models were used to compute the characteristics of nano-enhanced refrigerants. MS Excel was used to perform the liquid–vapour interpolation. It was discovered that refrigerants with nanoparticles have superior heat-transfer properties and operate most excellently at an optimal volume fraction of 0.1% for TiO2-R152a and CuO-R152a with a coefficient of performance (COP) as 10.8. However, the other blended nano-refrigerant TiO2-R113a performed the best at 0.5% of nano-particle volume fraction with a COP value of 5.27.
Wydawca

Rocznik
Strony
282--290
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland
  • Department of Thermal Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
  • Department of Thermal Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
  • Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
  • School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
  • School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
  • School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
  • School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore-632 014, India
  • DII, University of Naples Federico II, P.leTecchio 80, 80125, Napoli, Italy
  • DII, University of Naples Federico II, P.leTecchio 80, 80125, Napoli, Italy
Bibliografia
  • 1. Yılmaz AC. Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience [Internet]. 2020 Jan 20;10(5):1667–78. Available from: https://doi.org/10.1007/s13204-020-01258-5
  • 2. Barbato M, Cirillo L, Menditto L, Moretti R, Nardini S. Geothermal energy application in Campi Flegrei Area: The case study of a swimming pool building. International Journal of Heat and Technolo-gy [Internet]. 2017 Sep 20;35(Special Issue1):S102–7. Available from: https://doi.org/10.18280/ijht.35sp0114
  • 3. Cascetta F, Di Lorenzo R, Nardini S, Cirillo L. A Trnsys Simulation of a Solar-Driven Air Refrigerating System for a Low-Temperature Room of an Agro-Industry site in the Southern part of Italy. Energy Procedia [Internet]. 2017 Sep 1;126:329–36. Available from: https://doi.org/10.1016/j.egypro.2017.08.259
  • 4. Cascetta F, Cirillo L, Della Corte A, Nardini S. Comparison between different solar cooling thermally driven system solutions for an office building in Mediterranean Area. International Journal of Heat and Technology [Internet]. 2017 Mar 30;35(1):130–8. Available from: https://doi.org/10.18280/ijht.350118
  • 5. Cirillo L, Della Corte A, Nardini S. Feasibility study of solar cooling thermally driven system configurations for an office building in Medi-terranean area. International Journal of Heat and Technology [Inter-net]. 2016 Oct 31;34(S2):S472–80. Available from: https://doi.org/10.18280/ijht.34s240
  • 6. Leong KY, Saidur R, Kazi SN, Mamun A. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering [Internet]. 2010 Dec 1;30(17–18):2685–92. Available from: https://doi.org/10.1016/j.applthermaleng.2010.07.019
  • 7. Hussein A, Bakar RA, Kadirgama K, Sharma KV. Heat transfer enhancement using nanofluids in an automotive cooling system. In-ternational Communications in Heat and Mass Transfer [Internet]. 2014 Apr 1;53:195–202. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.01.003
  • 8. Subhedar D, Ramani BM, Gupta AK. Experimental investigation of overall heat transfer coefficient of AL2O3/Water-Mono ethylene gly-col nanofluids in an automotive radiator. Heat Transfer [Internet]. 2016 Oct 4;46(7):863–77. Available from: https://doi.org/10.1002/htj.21247
  • 9. Contreras EMC, Oliveira GA, Filho ÊPB. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. International Journal of Heat and Mass Transfer [Internet]. 2019 Apr 1;132:375–87. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.014
  • 10. Naiman II, Ramasamy D, Kadirgama K. Experimental and one di-mensional investigation on nanocellulose and aluminium oxide hybrid nanofluid as a new coolant for radiator. IOP Conference Series: Ma-terials Science and Engineering [Internet]. 2019 Jan 16;469:012096. Available from: https://doi.org/10.1088/1757-899x/469/1/012096
  • 11. Regulation (EU) No 517/2014 of the European Parliament and of the Council on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006
  • 12. Buonomo B, Cascetta F, Cirillo L, Nardini S. Application of nanofluids in solar cooling system: Dynamic simulation by means of TRNSYS software. Modelling, Measurement & Control [Internet]. 2018 Sep 30;87(3):143–50. Available from: https://doi.org/10.18280/mmc_b.870305
  • 13. Buonomo B, Cirillo L, Manca O, Nardini S. Effect of nanofluids on heat transfer enhancement in automotive cooling circuits. AIP Con-ference Proceedings [Internet]. 2019 Jan 1; Available from: https://doi.org/10.1063/1.5138764
  • 14. Buonomo B, Cirillo L, Ercole D, Manca O, Nardini S. Numerical Investigation on Viscous Dissipation Effect in Forced Convection in Rectangular Microchannels With Nanofluids. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) [Internet]. 2016 Nov 11; Available from: https://doi.org/10.1115/imece2016-66189
  • 15. Vasu V, Krishna KR, Kumar A. Thermal design analysis of compact heat exchanger using nanofluids. International Journal of Nanomanu-facturing [Internet]. 2008 Jan 1;2(3):271. Available from: https://doi.org/10.1504/ijnm.2008.018949
  • 16. Bianco V, Manca O, Nardini S, Vafai K. Heat Transfer Enhancement with Nanofluids [Internet]. CRC Press eBooks. 2015. Available from: https://doi.org/10.1201/b18324
  • 17. Sidik NAC, Yazid MNAWM, Mamat R. Recent advancement of nanofluids in engine cooling system. Renewable & Sustainable En-ergy Reviews [Internet]. 2017 Aug 1;75:137–44. Available from: https://doi.org/10.1016/j.rser.2016.10.057
  • 18. Subhedar D, Ramani BM, Gupta AK. Experimental investigation of overall heat transfer coefficient of Al2O3/Water-Mono ethylene glycol nanofluids in an automotive radiator. Heat Transfer [Internet]. 2016 Oct 4;46(7):863–77. Available from: https://doi.org/10.1002/htj.21247
  • 19. Saidur R, Leong KY, Mohammad H. A review on applications and challenges of nanofluids. Renewable & Sustainable Energy Reviews [Internet]. 2011 Apr 1;15(3):1646–68. Available from: https://doi.org/10.1016/j.rser.2010.11.035
  • 20. Alawi OA, Sidik NAC, Beriache M. Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: A review. International Communications in Heat and Mass Transfer [Internet]. 2015 Nov 1;68:91–7. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2015.08.014
  • 21. Nair V, Parekh AD, Tailor PR. Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study. Journal of the Brazilian Society of Mechanical Sciences and Engineering [Internet]. 2018 Apr 25;40(5). Available from: https://doi.org/10.1007/s40430-018-1177-6
  • 22. Yang L, Du K. An optimizing method for preparing natural refrigerant: ammonia-water nanofluids. Integrated Ferroelectrics [Internet]. 2013 Jan 1;147(1):24–33. Available from: https://doi.org/10.1080/10584587.2013.790278
  • 23. Li Z, Renault FL, Gómez AOC, Sarafraz MM, Khan HMU, Safaei MR, et al. Nanofluids as secondary fluid in the refrigeration system: Ex-perimental data, regression, ANFIS, and NN modeling. International Journal of Heat and Mass Transfer [Internet]. 2019 Dec 1;144:118635. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118635
  • 24. Coumaressin T, Palaniradja K. Performance analysis of a refrigera-tion system using nano fluid. International Journal of Advanced Me-chanical Engineering. 2014;4(4):459-70.
  • 25. Anish M, Senthilkumar G, Beemkumar N, Kanimozhi S, Arunkumar T. Performance study of a domestic refrigerator using CuO/AL2O3-R22 nanorefrigerant as a working fluid. International Journal of Am-bient Energy [Internet]. 2018 Apr 7;41(2):152–6. Available from: https://doi.org/10.1080/01430750.2018.1451376
  • 26. Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conver-sion and Management [Internet]. 2011 Jan 1;52(1):733–7. Available from: https://doi.org/10.1016/j.enconman.2010.07.052
  • 27. Kumar R, Singh J, Kundal P. Effect of CuO nanolubricant on com-pressor characteristics and performance of LPG based refrigeration cycle: experimental investigation. Heat and Mass Transfer [Internet]. 2017 Nov 29;54(5):1405–13. Available from: https://doi.org/10.1007/s00231-017-2231-0
  • 28. Alawi OA, Sidik NAC. Influence of particle concentration and temper-ature on the thermophysical properties of CuO/R134a nanorefriger-ant. International Communications in Heat and Mass Transfer [Inter-net]. 2014 Nov 1;58:79–84. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.038
  • 29. Said Z, Saidur R, Hepbaşlı A, Rahim NA. New thermophysical prop-erties of water based TiO2 nanofluid—The hysteresis phenomenon revisited. International Communications in Heat and Mass Transfer [Internet]. 2014 Nov 1;58:85–95. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.034
  • 30. James Clark Maxwell, A Treatise on Electricity and Magnetism, Unabridged, Dover,1954.
  • 31. Hamilton R, Crosser OK. Thermal conductivity of heterogeneous Two-Component systems. Industrial & Engineering Chemistry Fun-damentals [Internet]. 1962 Aug 1;1(3):187–91. Available from: https://doi.org/10.1021/i160003a005
  • 32. Yu W, Choi SJ. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research [Internet]. 2003 Apr 1;5(1/2):167–71. Availa-ble from: https://doi.org/10.1023/a:1024438603801
  • 33. Koo J, Kleinstreuer C. A new thermal conductivity model for nanoflu-ids. Journal of Nanoparticle Research [Internet]. 2004 Dec 1;6(6):577–88. Available from: https://doi.org/10.1007/s11051-004-3170-5
  • 34. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investiga-tion of nanofluids in confined laminar radial flows. International Jour-nal of Thermal Sciences [Internet]. 2009 Aug 1;48(8):1486–93. Avail-able from: https://doi.org/10.1016/j.ijthermalsci.2009.01.008
  • 35. Ghasemi B, Aminossadati SM. Brownian motion of nanoparticles in a triangular enclosure with natural convection. International Journal of Thermal Sciences [Internet]. 2010 Jun 1;49(6):931–40. Available from: https://doi.org/10.1016/j.ijthermalsci.2009.12.017
  • 36. Zhang M, Wang RX, Lou JF. Actuality and Application foreground of nanofluids in refrigeration system. Materials Science Forum [Inter-net]. 2011 Jul 1;694:261–5. Available from: https://doi.org/10.4028/www.scientific.net/msf.694.261
  • 37. Leo Ng (2021). Refrigeration Cycle in Simscape (https://www.mathworks.com/matlabcentral /fileexchange /46448-refrigeration-cycle-in-simscape), MATLAB Central File Exchange. Retrieved April 18, 2021.
  • 38. Yao S, Teng Z. Effect of nanofluids on boiling heat transfer perfor-mance. Applied Sciences [Internet]. 2019 Jul 15;9(14):2818. Availa-ble from: https://doi.org/10.3390/app9142818
  • 39. Leo Ng (2021). Refrigeration Cycle in Simscape (https://www.mathworks.com/matlabcentral /fileexchange /46448-refrigeration-cycle-in-simscape), MATLAB Central File Ex-change.Retrieved April 18, 2021.
  • 40. Tsvetkov OB, Laptev YuA, Asambaev AG. Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. Interna-tional Journal of Thermophysics [Internet]. 1994 Mar 1;15(2):203–14. Available from: https://doi.org/10.1007/bf01441582
  • 41. Mahdi QS, Theeb MA, Saed H. Enhancement on the performance of refrigeration system using the Nano-Refrigerant. Journal of Energy and Power Engineering [Internet]. 2017 Apr 28;11(4). Available from: https://doi.org/10.17265/1934-8975/2017.04.004
  • 42. Anderson A, Brindhadevi K, Salmen SH, Alahmadi TA, Maroušková A, Sangeetha M, et al. Effects of nanofluids on the photovoltaic ther-mal system for hydrogen production via electrolysis process. Interna-tional Journal of Hydrogen Energy [Internet]. 2022 Oct 1; 47(88):37183–91. Available from: https://doi.org/10.1016/j.ijhydene.2021.12.218
  • 43. Shen T, Xie H, Gavurová B, Sangeetha M, Karthikeyan C, Praveen-kumar TR, et al. Experimental analysis of photovoltaic thermal sys-tem assisted with nanofluids for efficient electrical performance and hydrogen production through electrolysis. International Journal of Hydrogen Energy [Internet]. 2023 Jun 1;48(55):21029–37. Available from: https://doi.org/10.1016/j.ijhydene.2022.12.079
  • 44. Senthilkumar A, Sahaluddeen PAM, Noushad MN, Musthafa EKM. Experimental investigation of ZnO / Sio2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings [Internet]. 2021 Jan 1;45:6087–93. Available from: https://doi.org/10.1016/j.matpr.2020.10.180
  • 45. Bibin BS, Gundabattini E. Investigation on transport properties, heat transfer characteristics and pressure drop of CuO enhanced R1234yf based refrigerant. Case Studies in Thermal Engineering [Internet]. 2023 Sep 1;49:103229. Available from: https://doi.org/10.1016/j.csite.2023.103229
  • 46. Bibin BS, Gundabattini E. Pressure drop and heat transfer Character-istics of TIO2/R1234YF Nanorefrigerant: A Numerical approach. Sus-tainability [Internet]. 2023 Aug 20;15(16):12605. Available from: https://doi.org/10.3390/su151612605
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9c6b45d0-9d6f-4c66-9587-75099fcd0f34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.