Warianty tytułu
Wpływ odnawialnych źródeł energii na systemy zabezpieczeń
Języki publikacji
Abstrakty
The current trend in the development of electric power systems is the integration of renewable energy sources in the form of distributed generation. It was revealed that one of the main reasons inhibiting this process is a change in the EPS operating modes, which in turn has a significant impact on the operation of relay protection and automation and, as a consequence, on their setting. A decrease in sensitivity and a violation of relay protection selectivity in distribution network in the case of integration of wind power generation into EPS have been experimentally proved. An important factor is the capacity and location of the wind power generation facilities connection. In addition, the article analyzes the existing approaches to implement the relay protection of such power systems. As a result, it is theoretically proved the need to develop new methods and means for comprehensive setting up of relay protection and automation, since existing approaches either limit the integration of new installations, or they are difficult to implement, or not flexible enough.
W rozproszonych sieciach w skład których wchodzą odnawialne źródła energii pojawia się problem zmiany warunków pracy przekaźnikowych systemów zabezpieczeń. W artykule analizowano wpływ odnawialnych źródeł energii na systemy zabezpieczeń. Wykazano że istnieje potrzeba opracowania nowych metod zabezpieczeń ponieważ istniejące mają ograniczone możliwości zastosowań.
Czasopismo
Rocznik
Tom
Strony
42--47
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, andreevmv@tpu.ru
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, suvorovaa@tpu.ru
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, aba7@tpu.ru
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, kievec.v.l@gmail.com
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia, fordlp006@mail.ru
Bibliografia
- [1] Global Energy Statistical Yearbook 2019. http://yearbook.enerdata.net (04.05.2019)
- [2] Jennett K., Coffele F., Booth C., Comprehensive and quantitative analysis of protection problems associated with increasing penetration of inverter-interfaced DG, in 11th IET International Conference on Developments in Power Systems Protection, (2012), 1-6
- [3] Telukunta V., Pradhan J., Agrawal A., Singh M., Srivani S. G., Protection challenges under bulk penetration of renewable energy resources in power systems: A review, CSEE Journal of Power and Energy Systems, 3 (2017), No. 4, 365-379
- [4] Zayandehroodi H., Mohamed A., Shareef H., Mohammadjafari M., A Comprehensive review of protection coordination methods in power distribution systems in the presence of DG, Przegląd Elektrotechniczny, 87 (2011), No. 8, 142-148
- [5] Andreev M. V., Gusev A. S., Ruban N. Y., Suvorov A. A., Ufa R. A., Askarov A. B., Bemš J., Králík T., Hybrid Real-Time Simulator of Large-Scale Power Systems, IEEE Transactions on Power Systems, 34 (2019), No. 2, 1404-1415
- [6] Andreev M., Borovikov Y., Gusev A., Sulaymanov A., Ruban N., Suvorov A., Ufa R., Bemš J., Králík T., Application of hybrid real-time power system simulator for research and setting a momentary and sustained fast turbine valving control, IET Generation, Transmission & Distribution, 12 (2018), No. 1, 133-141
- [7] Heier S., Grid integration of wind energy: onshore and offshore conversion systems, Hoboken: John Wiley & Sons Ltd, (2014)
- [8] Carlin P. W., Laxson A. S., Muljadi E. B., The History and State of the Art of Variable-Speed Wind Turbine Technology, Wind Energy, 6 (2003), 129-159
- [9] Wind Turbine Generators Reliable Technology for All Turbine Application. Power and Productivity for a Better World, ABB Reports, (2009)
- [10] Jimenez F., Vigueras-Rodriguez A., Gomez-Lazaro E., Fuentes J. A., Molina-Garcia A., Validation of a mechanical model for fault ride-through: Application to a Gamesa G52 commercial wind turbine, IEEE Transactions on Energy Conversion, 28 (2013), No. 3, 707-715
- [11] Jimenez F., Gomez-Lazaro E., Fuentes J. A., Molina-Garcia A., Vigueras-Rodriguez A., Validation of a double fed induction PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019 47 generator wind turbine model and wind farm verification following the Spanish grid code, Wind Energy, 15 (2012), No. 4, 645-659
- [12] Fuentes J. A., Molina A., Ruz F., Gomez E., Jimenez F., Wind turbine modeling: Comparison of advanced tools for transient analysis, in IEEE Power Engineering Society General Meeting, (2007), 1-6
- [13] Subramanian C., Casadei D., Tani A., Sorensen P., Blaabjerg F., McKeever P., Implementation of electrical simulation model for IEC standard Type-3A generator, in European Modelling Symposium, (2013), 426-431
- [14] IEC 61400-27-1:2015. Wind turbines. Part 27-1: Electrical simulation models. Wind turbines
- [15] Asmine M., Brochu J., Fortmann J., Gagnon R., Kazachkov Y., Langlois C., Larose C., Muljadi E., MacDowell J., Pourbeik P., Seman S. A., Wiens K., Model validation for wind turbine generator models, IEEE Transactions on power systems, 26 (2001), No. 3, 1769-1782
- [16] Ellis A., Kazachkov Y., Muljadi E., Pourbeik P., Sanchez-Gasca J. J., Description and technical specifications for generic WTG models - A status report, in IEEE/PES Power Systems Conference and Exposition, (2011), 1-8
- [17] Saidi Y., Mezouar A., Miloud Y., Yahiaoui M., Benmahdjoub M. A., Modeling and Adaptive Power Control-Designed based on Tip Speed Ratio method for Wind Turbines, Przegląd Elektrotechniczny, 95 (2019), No. 6, 40-46
- [18] Freire N., Estima J., Cardoso A., A Comparative Analysis of PMSG Drives Based on Vector Control and Direct Control Techniques for Wind Turbine Applications, Przegląd Elektrotechniczny, 88 (2012), No. 1A, 184-187
- [19] Hernandez C. V., Telsnig T., Pradas A. V., JRC Wind Energy Status Report 2016 Edition, Luxembourg: Publications Office of the European Union, Tech. Rep., (2017)
- [20] Yazdanpanahi H., Li Y. W., Xu W., A new control strategy to mitigate the impact of inverter-based DGs on protection system, IEEE Transactions on Smart Grid, 3 (2012), No. 3, 1427-1436
- [21] Sinclair A., Finney D., Martin D., Sharma P., Distance protection in distribution systems: how it assists with integrating distributed resources, IEEE Transactions on Industry Applications, 50 (2014), No. 3, 2186-2196
- [22] Padullaparti H. V., Chirapongsananurak P., Hernandez M. E., Santoso S., Analytical Approach to Estimate Feeder Accommodation Limits Based on Protection Criteria, IEEE Access, 4 (2016), 4066-4081
- [23] Zhan H., Wang C., Wang Y., Yang X., Zhang X., Wu C., Chen Y., Relay Protection Coordination Integrated Optimal Placement and Sizing of Distributed Generation Sources in Distribution Networks, IEEE Transactions on Smart Grid, 7 (2016), No. 1, 55-65
- [24] Meliopoulos A. P. S., Cokkinides G. J., Myrda P., Liu Y., Fan R., Sun L., Huang R., Tan Z., Dynamic State Estimation-Based Protection: Status and Promise, IEEE Transactions on Power Delivery, 32 (2017), No. 1, 320-330
- [25] Andreev M., Suvorov A., Ruban N., Ufa R., Gusev A., Razzhivin I., Stavitskiy S., Bay Y., Kievets A., Askarov A., Lozinova N., Suslova O., Development and Research of Hybrid Model of Relay Protection, in 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, (2018), 1-6
- [26] Andreev M., Askarov A., Suvorov A., Design of the magnetic hysteresis mathematical model based on Preisach theory, Electrical Engineering, 101 (2019), No. 3, 3-9
- [27] Andreev M., Gusev A., Suvorov A., Ruban N., Ufa R., Study of mutual influence of measuring part elements of transformer differential protection and its impact on the primary signal processing, Przeglad Elektrotechniczny, 94 (2018), No. 9, 71- 74
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9c3a16b7-64f7-48bf-a1e6-87eb08a81bf2