Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
17th Conference on Computer Science and Intelligence Systems
Języki publikacji
Abstrakty
Dirichlet's principle, also known as a pigeonhole principle, claims that if n item are put into m containers, with n > m, then there is a container that contains more than one item. In this work, we focus rather on an inverse Dirichlet's principle (by switching items and containers), which is as follows: considering n items put in m containers, when n < m, then there is at least one container with no item inside. Furthermore, we refine Dirichlet's principle using discrete combinatorics within a probabilistic framework. Applying stochastic fashion on the principle, we derive the number of items n may be even greater than or equal to m, still very likely having one container without an item. The inverse definition of the problem rather than the original one may have some practical applications, particularly considering derived effective upper bound estimates for the items number, as demonstrated using some applied mini-studies.
Słowa kluczowe
Rocznik
Tom
Strony
113--116
Opis fizyczny
Bibliogr. 5 poz., rys., tab., wykr.
Twórcy
autor
- Department of Statistics and Probability Faculty of Informatics and Statistics Prague University of Economics and Business nám. W. Churchilla 4, 130 67 Prague, Czech Republic , lubomir.stepanek@vse.cz
autor
- Department of Statistics and Probability Faculty of Informatics and Statistics Prague University of Economics and Business nám. W. Churchilla 4, 130 67 Prague, Czech Republic , filip.habarta@vse.cz
autor
- Department of Statistics and Probability Faculty of Informatics and Statistics Prague University of Economics and Business nám. W. Churchilla 4, 130 67 Prague, Czech Republic , malai@vse.cz
autor
- Department of Statistics and Probability Faculty of Informatics and Statistics Prague University of Economics and Business nám. W. Churchilla 4, 130 67 Prague, Czech Republic , marek@vse.cz
Bibliografia
- 1. Lynn Loomis and Shlomo Sternberg. “Potential theory in E “. In: Advanced Calculus. World Scientific, Mar. 2014, pp. 474-508. http://dx.doi.org/10.1142/9789814583947_0013.
- 2. Giridhar D. Mandyam, Nasir U. Ahmed, and Neeraj Magotra. “DCT-based scheme for lossless image compression”. In: SPIE Proceedings. SPIE, Apr. 1995. http://dx.doi.org/10.1117/12.206386.
- 3. Yakir Aharonov, Fabrizio Colombo, Sandu Popescu, et al. “Quantum violation of the pigeonhole principle and the nature of quantum correlations”. In: Proceedings of the National Academy of Sciences 113.3 (Jan. 2016), pp. 532-535. http://dx.doi.org/10.1073/pnas.1522411112.
- 4. Benoit Rittaud and Albrecht Heeffer. “The Pigeonhole Principle, Two Centuries Before Dirichlet”. In: The Mathematical Intelligencer 36.2 (Aug. 2013), pp. 27-29. http://dx.doi.org/10.1007/s00283-013-9389-1.
- 5. Mario Cortina Borja and John Haigh. “The birthday problem”. In: Significance 4.3 (Aug. 2007), pp. 124-127. http://dx.doi.org/10.1111/j.1740-9713.2007.00246.x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9c37c66b-4485-4bdf-bed2-9dd1f8dc3d57