Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 40, nr 1 | 203--214
Tytuł artykułu

Design of newly developed burner rig operating with hydrogen rich fuel dedicated for materials testing

Treść / Zawartość
Warianty tytułu
PL
Charakterystyka badawczego stanowiska palnikowego zasilanego paliwem wodorowym dedykowanego do badań materiałów
Języki publikacji
EN
Abstrakty
EN
The main purpose of present article is to present the burner rig station newly developed at the Rzeszow University of Technology in Poland. The burner rig is dedicated to operate on fuels rich in hydrogen. The burner rig is able to operate with fuels with hydrogen content up to 50 volume %. A detailed description of burner rig construction is presented. Moreover a mathematical model predicting temperature distribution within the combustion chamber is presented. The obtained results showed a good insulation of burner rig construction leading to the temperature gradient from 1674℃ in the burner rig to 214℃ on steel housing.
PL
Głównym celem niniejszego artykułu jest przedstawienie stanowiska palnikowego nowo opracowanego na Politechnice Rzeszowskiej. Palnik przeznaczony jest do pracy na paliwach bogatych w wodór. Palnik może pracować z paliwami o zawartości wodoru do 50% obj. Przedstawiono szczegółowy opis budowy stanowiska palnika. Zaprezentowano także model matematyczny przewidujący rozkład temperatury w komorze spalania. Uzyskane wyniki wykazały dobrą izolację konstrukcji palnika, co doprowadziło do powstania gradientu temperatury od 1674°C w korpusie palnika do 214°C na obudowie stalowej.
Wydawca

Rocznik
Strony
203--214
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, wjnowak@prz.edu.pl
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, drajewic@prz.edu.pl
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, mgoral@prz.edu.pl
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, jsztmiop@prz.edu.pl
Bibliografia
  • 1. Airbus (2023). Could hydrogen fuel-cell systems be the solution for emission-free aviation? Retrieved September 15, 2023, from https://www.airbus.com/en/newsroom/stories/2022-11-could-hydrogen-fuel-cell-systems-be-the-solution-for-emission-free
  • 2. ASTM C 680–08 (2010). American Society for Testing and Materials. Standard practice for estimate of the heat gain or loss and the surface temperatures of insulated flat, cylindrical, and spherical systems by use of computer programs.
  • 3. Banihabib, R., & Assadi, M. A. (2022). Hydrogen-fueled micro gas turbine unit for carbon-free heat and power generation. Sustainability, 14, Article 13305. https://doi.org/10.3390/su142013305
  • 4. Boeing (2010, July 14). Boeing's phantom eye ford fusion powered stratocraft. https://www.theregister.com/2010/07/13/phantom_eye_rollout/
  • 5. Chen, K., Seo, D., & Canteenwalla, P. (2021). The effect of high-temperature water vapour on degradation and failure of hot section components of gas turbine engines. Coatings, 11, Article 1061. https://doi.org/10.3390/coatings11091061
  • 6. Chopinet, J. N., Lassoudière, F., Fiorentino, C., Alliot, P., Guedron, S., Supié, P., et al., (2011, October 3-7). Results of the Vulcain X technological demonstration. Proceedings of the 62nd International Astronautical Congress, 8, (pp. 6289-6298). International Astronautical Federation.
  • 7. Churchill, S.W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18(9), 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7
  • 8. Cojocaru, M. O., Branzei, M., & Druga, L.N. (2022). Aluminide diffusion coatings on IN 718 by pack cementation. Materials, 15, Article 5453. https://doi.org/10.3390/ma15155453
  • 9. Cowing, K. (2012, October 16). Blue origin tests 100 k lb LOX/LH2 engine in commercial crew program. NewSpace Watch. http://archive.is/XtDg5
  • 10. Decarbonization technology. Hydrogen gas turbine. (2023, September 11). https://solutions.mhi.com/power/decarbonization-technology/hydrogen-gas-turbine/
  • 11. Deodeshmukh, V. P. (2013a). Long-term performance of high-temperature foil alloys in water vapor containing environment. Part I: Oxidation behavior. Oxidation of Metals, 79, 567-578. https://doi.org/10.1007/s11085-012-9343-1
  • 12. Deodeshmukh, V. P. (2013b). Long-term performance of high-temperature foil alloys in water vapor containing environment. Part II: Chromia vaporization behavior. Oxidation of Metals, 79, 579-588. https://doi.org/10.1007/s11085-012-9344-0
  • 13. England, D. M., & Virkar, A. V. (1999). Oxidation kinetics of some nickel‐based superalloy foils and electronic resistance of the oxide scale formed in air part I. Journal of The Electrochemical Society, 146(9), 3196–3202. https://doi.org/10.1149/1.1392454
  • 14. England, D. M., & Virkar, A. V. (2001). Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed part II Journal of The Electrochemical Society, 148(4), A330–A338. https://doi.org/10.1149/1.1354611
  • 15.Essuman, E., Meier, G. H., Zurek, J., Hänsel, M., Norby, T., Singheiser, L., & Quadakkers, W. J. (2008). Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-pO2 gases. Corrosion Science, 50(6), 1753–1760. https://doi.org/10.1016/j.corsci.2008.03.001
  • 16. Girolamo, G. D., Brentari, A., & Serra, E. (2014). Morphology and microstructure of NiCoCrAlYRe coatings after thermal aging and growth of an Al2O3-Rich oxide scale. Coatings, 4(4), 701-714. https://doi.org/10.3390/coatings4040701
  • 17. Gnielinski, V. (1976). New equations for heat and mass transfer in the turbulent pipe and channel flow. International Chemical Engineering, 16(2), 359-368.
  • 18. Golewski, P., & Sadowski, T. (2019). The Influence of TBC aging on crack propagation due to foreign object impact. Materials, 12(9), Article 1488. https://doi.org/10.3390/ma12091488
  • 19. Góral, M., Pytel, M., Ochal, K., Drajewicz, M., Kubaszek, T., Simka, W., & Nieuzyla, L. (2021). Microstructure of aluminide coatings modified by Pt, Pd, Zr and Hf formed in low-activity CVD process. Coatings, 11(4), Article 421. https://doi.org/10.3390/coatings11040421
  • 20. Grilli, M. L., Valerini, D., Slobozeanu, A. E., Postolnyi, B. O., Balos, S., Rizzo, A., & Piticescu, R. R. (2021). Critical raw materials saving by protective coatings under extreme conditions: a review of last trends in alloys and coatings for aerospace engine applications. Materials, 14(7), Article 1656. https://doi.org/10.3390/ma14071656
  • 21. Hänsel, M., Quadakkers, W. J., Singheiser, L., & Nickel, H. (1998). Report Forschungszentrum Julich, Jul-3583, ISSN 0944-2952.
  • 22. Hänsel, M., Quadakkers, W. J., & Young, D. J. (2003). Role of water vapor in chromia-scale growth at low oxygen partial pressure. Oxidation of Metals, 59(3/4), 285-301. https://doi.org/10.1023/A:1023040010859
  • 23. Holcomb G. R. (2008). Calculation of reactive-evaporation rates of chromia. Oxidation of Metals, 69, 163-180. https://doi.org/10.1007/s11085-008-9091-4
  • 24. Hydrogen fueled gas turbines. (2023, September 12). https://www.ge.com/gas-power/future-of-energy/hydrogen-fueled-gas-turb-nes?utm_campaign=h2&utm_medium=cpc&utm_source=google&utm_content=rsa&utm_term=Ge%20hydrogen%20turbines&gclid=CjwKCAiAheacBhB8EiwAItVO2z_lfkno6C HBFQBoXnpvzF9GlALjzAhJouUzlArw-J2vuC-Ncb_XsBoCKlsQAvD_BwE
  • 25. Hydrogen gas turbine. The Turbotec HyTG-550. (2023, September 14). https://www.turbotec.be/hydrogen-gas-turbine/
  • 26. Janakiraman, R., Meier, G. H., & Petit, F. S. (1999). The effect of water vapor on the oxidation of alloys that develop alumina scales for protection. Metallurgical and Materials Transactions A, 30, 2905-2913. https://doi.org/10.1007/s11661-999-0128-3
  • 27. Kopec, M., Kukla, D., Yuan, X., Rejmer, W., Kowalewski, Z. L., & Senderowski, C. (2021). Aluminide thermal barrier coating for high temperature performance of MAR 247 nickel based superalloy. Coatings, 11(1), 48. https://doi.org/10.3390/coatings11010048
  • 28. Lele, A. (2014). GSLV-D5 success: a major “booster” to India's space program. The Space Review. http://www.thespacereview.com/article/2428/1
  • 29. Marin, G. E., Mendeleev, D. I., & Osipov, B. M. (2021). A study on the operation of a gas turbine unit using hydrogen as fuel. Journal; of Physics: Conference Series, 1891, Article 012055. https://doi.org/10.1088/1742-6596/1891/1/012055
  • 30. Maris-Sida, M. C., Meier, G. H., & Petit F. S. (2003). Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers. Metallurgical and Materials Transactions A, 34, 2609-2619. https://doi.org/10.1007/s11661-003-0020-5
  • 31. Michalik, M., Hänsel, M., Zurek, J., Singheiser, L., & Quadakkers, W. J. (2005). Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C. Materials and High Temperatures, 22(3-4) , 213-221. https://doi.org/10.1179/mht.2005.025
  • 32. Moses, P. L., Rausch, V. L., Nguyen, N. T., & Hill, J. R.. (2004). NASA hypersonic flight demonstrators-overview, status, and future plans. Acta Astronautica, 55(3-9), 619-630. https://doi.org/10.1016/j.actaastro.2004.05.045
  • 33. Najjar, Y. S. H. (1990). Hydrogen fueled and cooled gas turbine engine. International Journal of Hydrogen Energy, 15(11), 827-832. https://doi.org/10.1016/0360-3199(90)90019-U
  • 34. NASA (1968) J-2 Engine fact sheet. Saturn V News Reference. Retrieved September 17, 2023, from http://www.nasa.gov/centers/marshall/pdf/499245mainJ2Enginefs.pdf
  • 35. Nazari, M. A., Alavi, M. F., Salem, M., & El Haj Assad M. (2022). Utilization of hydrogen in gas turbines: acomprehensive review. International Journal of Low-Carbon Technologies, 17, 513–519. https://doi.org/10.1093/ijlct/ctac025
  • 36. Negoro, N., Ogawara, A., Onga, T., Manako, H., Kurosu, A., Yamanishi, N., Miyazaki, K., Hari, S., & Okita, K. (2007, July 8-11). Next booster engine LE-X in Japan. Proceedings of the 43rd AI-AA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Article AIAA 2007-5490. https://doi.org/10.2514/6.2007-5490
  • 37. Nowak, W. J., Wierzba, P., Naumenko, D., Quadakkers, W. J., & Sieniawski, J. (2016). Water vapour effect on high temperature oxidation behaviour of superalloy Rene 80. Advances in Manufacturing Science and Technology, 40, 41-52. https://doi.org/10.2478/amst-2016-000
  • 38. Onal, K., Maris-Sida, M. C., Meier, G. H., & Pettit, F. S. (2004). The effects of water vapor on the oxidation of nickel-base superalloys and coatings at temperatures from 700°C to 1100°C. Superalloys, 607-615.
  • 39. Opila, E. J., Mayers, D. L., Jacobson, N. S., Nielsen, I. M. B., Johnson, D. F., Olminsky, J. K., & Allendorf, M. D. (2007). Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). Journal of Physical Chemistry A, 111(10), 1971-1980. https://doi.org/10.1021/jp0647380
  • 40. Pędrak, P., Dychtoń, K., Drajewicz, M., & Góral, M. (2021). Synthesis of Gd2Zr2O7 coatings using the novel reactive PS-PVD Process. Coatings, 11(10), Article 1208. https://doi.org/10.3390/coatings11101208
  • 41. Pędrak, P., Góral, M., Dychton, K., Drajewicz, M., Wierzbinska, M., & Kubaszek, T. (2022). The influence of reactive PS-PVD process parameters on the microstructure and thermal properties of Yb2Zr2O7 thermal barrier coating. Materials, 15(4), Article 1594. https://doi.org/10.3390/ma15041594
  • 42. Pujilaksono, B., Jonsson, T., Halvarsson, M., Panas, I., Svensson, J. E., & Johansson, L. G. (2008). Paralinear oxidation of chromium in O2 + H2O environment at 600-700°C. Oxidation of Metals, 70, 163-188. https://doi.org/10.1007/s11085-008-9114-1
  • 43. Pyo, M.-J., Moon, S.-W., & Kim, T.-S. (2021). A comparative feasibility study of the use of hydrogen produced from surplus wind power for a gas turbine combined cycle power plant. Energies, 14(24), Article 8342. https://doi.org/10.3390/en14248342
  • 44. Qiu, S.-Y., Wu, C.-W., Huang, C.-G., Ma, Y., & Guo, H.-B. (2021). Microstructure dependence of effective thermal conductivity of EB-PVD TBCs. Materials, 14(8), 1838. https://doi.org/10.3390/ma14081838
  • 45. Quaddakers, W. J., Norton, J. F., Canetoli, S., Schuster, K., & Gil, A. (1996). In S. B. Newcomb, J. A. Little, (Eds.); 3rd International Conference on Microscopy of Oxidation (pp. 609-619). The Institute of Materials.
  • 46. Rachuk, V., Goncharov, N., Martinyenko, Y., & Fanciullo, T. (1996, July 1-3). Evolution of the RD-0120 for future launch systems. Proceedings of the 32nd Joint Propulsion Conference and Exhibit Article 96-3004. https://doi.org/10.2514/6.1996-3004
  • 47. Renouard-Vallet, G., Kallo. J., Saballus, M., Schmithals, G., Schirmer, J., & Friedrich, K.A. (2011). Fuel cells for aircraft applications. ECS Transactions, 30, 271-280. https://doi.org/10.1149/1.3562482
  • 48. Report 2555-M-1-F. (1967). Development of a 1,500,000-lb-thrust (nominal vacuum) liquid hydrogen/liquid oxygen engine. (August 1967). Retrieved September 16, 2023, from http://alternatewars.com/BBOW/Space_Engines/1967_M-1_Final_Report.pdf
  • 49. Rich, B.R. (1973, May 15-16). Lockheed CL-400 liquid hydrogen fueled Mach 2.5 reconnaissance vehicle. Symposium on hydrogen fueled aircraft.
  • 50. Schütze, M., & Quadakkers, W. J. (2017). Future directions in the field of high-temperature corrosion research. Oxidation of Metals, 87, 681–704. https://doi.org/10.1007/s11085-017-9719-3
  • 51. Smialek, J. L. (2010). Moisture-induced alumina scale spallation: The hydrogen factor. Report NASA/TM-2010-216260 (pp. (1-31).Retrieved September 4, 2023, from https://ntrs.nasa.gov/api/citations/20100021167/downloads/20100021167.pdf
  • 52. Southern Co. Gas-fired demonstration validates 20% hydrogen fuel blend. (2023, September 13). https://www.powermag.com/southern-co-gas-fired-demonstration-validates-20-hydrogen-fuel-blend/
  • 53. Stanislowski, M., Froitzheim, J., Niewolak, L., Quadakkers, W. J., Hilpert, K., Markus, T., & Singheiser L. (2007). Reduction of chromium vaporisation from SOFC interconnectors by highly effective coatings. Journal of Power Sources, 164(2), 578-589. https://doi.org/10.1016/j.jpowsour.2006.08.013
  • 54. Stefan, E., Talic, B., Larring, Y., Gruber, A., & Peters, T. A. (2022). Materials challenges in hydrogen-fuelled gas turbines, International Materials Reviews, 67(5), 461-486. https://doi.org/10.1080/09506608.2021.1981706
  • 55. Suzuki, M., Shahien, M., Shinoda, K., & Akedo, J. (2022) The current status of environmental barrier coatings and future direction of thermal spray process. Materials Transactions, 63(8), 1101-1111. https://doi.org/10.2320/matertrans.MT-T2021003
  • 56. Tan, Y.H. (2013). Research on large thrust liquid rocket engine. Yuhang Xuebao/Journal of Astronautics, 34(10), 1303-1308. http://dx.doi.org/10.3873/j.issn.1000-1328.2013.10.002
  • 57. Tupolev, A.A., (1994). Utilization of liquid hydrogen or liquid natural gas as an aviation fuel. In R. E. Billings, E. Dayton (Eds.). Conference proceedings, Project Energy (p. 104). International Academy of Sciences.
  • 58. Vassen, R., Bakan, E., Gatzen, C., Kim, S., Mack, D.E., & Guillon, O. (2019). Environmental barrier coatings made by different thermal spray technologies. Coatings, 9(12), Article 784. https://doi.org/10.3390/coatings9120784
  • 59. Wang, C., Liu, M., Feng, J., Zhang, X., Deng, C., Zhou, K., Zeng, D., Guo, S., Zhao, R., & Li, S. (2020). Water vapor corrosion behavior of Yb2SiO5 environmental barrier coatings prepared by plasma spray-physical vapor deposition. Coatings, 10(4), 392. https://doi.org/10.3390/coatings10040392
  • 60. Westenberger, A. (2002). Liquid hydrogen fuelled aircraft-system analysis. Final technical report 2002.
  • 61. Westenberger, A. (2003). Liquid hydrogen fuelled aircraft-system analysis. Final technical report (publishable version). Cryoplane project, 2003.
  • 62. Wilhelm, W. F. (1972). Space shuttle orbiter main engine design. Society of Automotive Engineers Transactions, 81, Article 72 0807.
  • 63. Winter, C. J. (1990). Hydrogen in high speed air transportation. International Journal of Hydrogen Energy, 15(8), 579-595. https://doi.org/10.1016/0360-3199(80)90006-3
  • 64. Zakeri, A., Bahmani, E., & Ramazani, A. (2022). A review on the enhancement of mechanical and tribological properties of MCrAlY coatings reinforced by dispersed micro and nanoparticles. Energies, 15(5), 1914. https://doi.org/10.3390/en15051914
  • 65. Zero emission hydrogen turbine center. (2023, September 12). https://www.siemens-energy.com/global/en/priorities/future-technologies/hydrogen/zehtc.html
  • 66. Żurek, J., Young, D. J., Essuman, E., Hänsel, M., Penkalla, H. J., Niewolak, L., & Quadakkers, W. J. (2008). Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases. Materials Science and Engineering A, 477(1-2), 259-270. https://doi.org/10.1016/j.msea.2007.05.035
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9c175b9d-3e9c-4d87-a0c6-5450724abe0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.