Czasopismo
2017
|
Vol. 151, nr 1/4
|
161--171
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Recently Caputo and Fabrizio suggested new definition of fractional derivative that the new kernel has no singularity. In this paper, an analytical method for solving Riccati differential equation with a new fractional derivative is reported. We present numerical results of solving the fractional Riccati differential equations by using the variational iteration method and its modification. The obtained results of two methods demonstrate the efficiency and simplicity of the MVIM that gives good approximations for a larger interval.
Czasopismo
Rocznik
Tom
Strony
161--171
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Department of Mathematics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran, jafari@umz.ac.ir
autor
- Department of Mathematics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
autor
- Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
autor
- Department of Mathematics, Cankaya University, 06530 Ankara, Turkey
- Institute of Space Sciences, P. O. BOX, MG-23, 76900 Magurele-Bucharest, Romania
Bibliografia
- [1] Baleanu D, Diethelm K, Scalas E, Trujillo J. Fractional Calculus Models and Numerical Methods ( Series on Complexity), Nonlinearity and Chaos. World Scientific, 2012. ISBN: 9789814355209.
- [2] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Elsevier Science, 2006. ISBN: 9780444518323.
- [3] Podlubny I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press 1999. ISBN: 0125588402.
- [4] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach Science Publishers, Switzerland, Philadelphia, Pa., USA, 1993. ISBN: 2-88124-864-0.
- [5] Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 2015; 1 (2): 73-85. URL http://dx.doi.org/10.12785/pfda/010201.
- [6] Caputo M, Fabrizio M. Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels. Progress in Fractional Differentiation and Applications, 2016; 2 (1): 1-11. URL http: //dx.doi.org/10.18576/pfda/020101.
- [7] Atangana A, Baleanu D. Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer. Journal of Engineering Mechanics, 2016; D4016005. URL http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001091.
- [8] Cattani C, Srivastava H, Yang X. Fractional Dynamics. De Gruyter, 2015. ISBN: 9783110472097. doi: 10.1515/9783110472097.
- [9] Zhang YD, Chen S, Wang SH, Yang JF, Phillips P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. International Journal of Imaging Systems and Technology, 2015; 25 (4): 317-327. doi: 10.1002/ima.22144.
- [10] Hristov J. Transient Heat Diffusion with a Non-Singular Fading Memory: From the Cattaneo Constitutive Equation with Jeffreys kernel to the Caputo-Fabrizio time-fractional derivative. Thermal Science, 2016; 20 (2): 19. doi: 10.2298/TSCI160112019H.
- [11] Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan TF. Pathological Brain Detection by a Novel Image Feature-Fractional Fourier Entropy. Entropy, 2015; 17 (12): 8278-8296. doi: 10.3390/e17127877. URL http://www.mdpi.com/1099-4300/17/12/7877.
- [12] Zhang Y, Yang X, Cattani C, Rao RV, Wang S, Phillips P. Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm. Entropy, 2016; 18 (3): 77. doi: 10.3390/e18030077. URL http://www.mdpi.com/1099-4300/18/3/77.
- [13] Zhang YD, Wang SH, Liu G, Yang J. Computer-aided diagnosis of abnormal breasts in mammogram images weighted-type fractional Fourier transform. Advances in Mechanical Engineering, 2016; 8 (2): 1-11. doi: 10.1177/1687814016634243. URL http://ade.sagepub.com/content/8/2/1687814016634243.abstract.
- [14] Jafari H. Numerical Solution of Time-Fractional Klein-Gordon Equation by Using the Decomposition Methods. Journal of Computational and Nonlinear Dynamics, 2016; 11 (4): 041015-5. doi: 10.1115/1.4032767.
- [15] Losada J, Nieto JJ. Properties of a New Fractional Derivative without Singular Kernel. Progress in Fractional Differentiation and Applications, 2015; 1 (2): 87-92.
- [16] He JH. Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons & Fractals, 2004; 19 (4): 847-851. doi: http://dx.doi.org/10.1016/S0960-0779(03)00265-0.
- [17] Jafari H, Tajadodi H, Baleanu D. A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fractional Calculus and Applied Analysis, 2013; 16 (1): 109-122. doi: 10.2478/s13540-013-0008-9.
- [18] Jafari H. A comparison between the variational iteration method and the successive approximations method. Applied Mathematics Letters, 2014; 32: 1-5. doi: http://dx.doi.org/10.1016/j.aml.2014.02.004. URL http://www.sciencedirect.com/science/article/pii/S0893965914000391.
- [19] Momani S, Odibat Z. Numerical approach to differential equations of fractional order. Journal of Computational and Applied Mathematics, 2007; 207 (1): 96-110. Special Issue: Variational Iteration MethodReality, Potential, and Challenges. doi: http://dx.doi.org/10.1016/j.cam.2006.07.015.
- [20] Yang XJ, Baleanu D, Srivastava HM. Local Fractional Integral Transforms and Their Applications. Academic Press, Boston, 2016. ISBN: 978-0-12-804002-7.
- [21] Geng F. A modified variational iteration method for solving Riccati differential equations. Computers & Mathematics with Applications, 2010; 60 (7): 1868-1872. doi: http://dx.doi.org/10.1016/j.camwa.2010.07.017.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9c02914c-ea6f-435f-be4a-9c7bc2165916