Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 2 | 85--92
Tytuł artykułu

Emergence of Antibiotic Resistance Genes sul1, tetA, blaGES, and mexF in Sapon Irrigation Canal and Aquaculture Pond in Kulon Progo Regency, Indonesia

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Antibiotic resistance genes (ARGs) have recently become an emerging environmental contaminants. The aquatic environment, such as a river has already become the most polluted environment and can be a driver of ARGs. The water from irrigation canal has the potential to become a hotspot of ARGs through contamination from river pollutants carried along to the irrigation canal. However, the information regarding the cross-contamination of ARGs in fish farming systems integrated with irrigation canal in Indonesia needs further study. This study investigated the occurrence of ARGs sulfonamide (sul1), tetracycline (tetA), beta lactam (blaGES), and multi drug resistance (mexF) from body water samples along the irrigation canal and aquaculture ponds which utilize irrigation water for cultivation. Sampling sites are located in the Kulon Progo Regency (Indonesia) and samples were taken during the rainy season. Gene amplification was performed using Multiplex PCR. The results showed that sul1, tetA, and blaGES were detected in 67%, 63%, and 55% of all samples. Meanwhile, mexF was only found upstream and downstream irrigation canals, which accounted for 25% of the total samples. The results of this study indicated that the Sapon Irrigation Canal has the potential to cause the spread of antibiotic resistance genes.
Wydawca

Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Master in Biotechnology Study Program, Graduate School, Universitas Gadjah Mada, Jalan Teknika Utara, Pogung, Sinduadi, Mlati, Yogyakarta 55284, Indonesia
  • Biotechnology Research Center, Universitas Gadjah Mada, Jalan Teknika Utara, Pogung, Sinduadi, Mlati, Yogyakarta 55284, Indonesia
  • Master in Biotechnology Study Program, Graduate School, Universitas Gadjah Mada, Jalan Teknika Utara, Pogung, Sinduadi, Mlati, Yogyakarta 55284, Indonesia
  • Biotechnology Research Center, Universitas Gadjah Mada, Jalan Teknika Utara, Pogung, Sinduadi, Mlati, Yogyakarta 55284, Indonesia
  • Aquaculture Laboratory, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jalan Flora A4, Bulaksumur, Yogyakarta 55281, Indonesia
  • Fish Product Technology Study Program, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jalan Flora A4, Bulaksumur, Yogyakarta 55281, Indonesia, primaputra@ugm.ac.id
Bibliografia
  • 1. Ali, N.G., Ali, T.E.-S., Aboyadak, I.M., Elbakry, M.A., 2021. Controlling Pseudomonas aeruginosa infection in Oreochromis niloticus spawners by cefotaxime sodium. Aquaculture, 544, 737107. https://doi.org/10.1016/j.aquaculture.2021.737107
  • 2. Amato, M., Dasí, D., González, A., Ferrús, M.A., Castillo, M.Á., 2021. Occurrence of antibiotic resistant bacteria and resistance genes in agricultural irrigation waters from Valencia city (Spain). Agricultural Water Management ,256, 107097. https://doi.org/10.1016/j.agwat.2021.107097
  • 3. Anokyewaa, M.A., Amoah, K., Li, Y., Lu, Y., Kuebutornye, F.K.A., Asiedu, B., Seidu, I., 2021. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China. Aquaculture Reports, 21, 100784. https://doi.org/10.1016/j.aqrep.2021.100784
  • 4. Bourdonnais, E., Colcanap, D., Le Bris, C., Brauge, T., Midelet, G., 2022. Occurrence of Indicator Genes of Antimicrobial Resistance Contamination in the English Channel and North Sea Sectors and Interactions With Environmental Variables. Front. Microbiol., 13, 883081. https://doi.org/10.3389/fmicb.2022.883081
  • 5. Conte, D., Mesa, D., Jové, T., Zamparette, C.P., Sincero, T.C.M., Palmeiro, J.K., Dalla-Costa, L.M., 2022. Novel Insights into bla GES Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Microbiol Spectr, 10, e02469-21. https://doi.org/10.1128/spectrum.02469-21
  • 6. Curtis, A.N., Tiemann, J.S., Douglass, S.A., Davis, M.A., Larson, E.R., 2021. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Diversity and Distributions, 27, 1918–1931. https://doi.org/10.1111/ddi.13196
  • 7. Fadare, F.T., Okoh, A.I., 2021. Distribution and molecular characterization of ESBL, pAmpC β-lactamases, and non-β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS ONE, 16, e0254753. https://doi.org/10.1371/journal.pone.0254753
  • 8. Han, Y., Wang, J., Zhao, Z., Chen, J., Lu, H., Liu, G., 2017. Fishmeal Application Induces Antibiotic Resistance Gene Propagation in Mariculture Sediment. Environ. Sci. Technol., 51, 10850–10860. https://doi.org/10.1021/acs.est.7b02875
  • 9. Han, Y., Wang, J., Zhao, Z., Chen, J., Lu, H., Liu, G., 2018. Combined impact of fishmeal and tetracycline on resistomes in mariculture sediment. Environmental Pollution, 242, 1711–1719. https://doi.org/10.1016/j.envpol.2018.07.101
  • 10. Joseph, C., Faiq, M.E., Li, Z., Chen, G., 2022. Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems. Hydrobiologia, 849, 4119–4133. https://doi.org/10.1007/s10750-022-04959-w
  • 11. Koch, N., Islam, N.F., Sonowal, S., Prasad, R., Sarma, H., 2021. Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Current Research in Microbial Sciences, 2, 100027. https://doi.org/10.1016/j.crmicr.2021.100027
  • 12. Kestel, J.H., Field, D.L., Bateman, P.W., White, N.E., Allentoft, M.E., Hopkins, A.J.M., Gibberd, M., Nevill, P., 2022. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. Science of The Total Environment, 847, 157556. https://doi.org/10.1016/j.scitotenv.2022.157556
  • 13. Kulik, K., Lenart-Boroń, A., Wyrzykowska, K., 2023. Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water, 15, 975. https://doi.org/10.3390/w15050975
  • 14. Lai, F.Y., Muziasari, W., Virta, M., Wiberg, K., Ahrens, L., 2021. Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis. Environmental Pollution 287, 117651. https://doi.org/10.1016/j.envpol.2021.117651
  • 15. Larsson, D.G.J., Flach, C.-F., 2022. Antibiotic resistance in the environment. Nat Rev Microbiol, 20, 257–269. https://doi.org/10.1038/s41579-021-00649-x
  • 16. Liang, Z., Yu, Y., Ye, Z., Li, G., Wang, W., An, T., 2020. Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. Environment International, 143, 105934. https://doi.org/10.1016/j.envint.2020.105934
  • 17. Lin, Z., Yuan, T., Zhou, L., Cheng, S., Qu, X., Lu, P., Feng, Q., 2021. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ Geochem Health, 43, 1741–1758. https://doi.org/10.1007/s10653-020-00759-0
  • 18. Lye, Y.-L., Chai, L.-C., Lee, C.-W., Suzuki, S., Bong, C.-W., 2022. Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. Water, 14, 1018. https://doi.org/10.3390/w14071018
  • 19. Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., et al., 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • 20. Ozer, B., Duran, N., Onlen, Y., Savas, L., 2012. Efflux pump genes and antimicrobial resistance of Pseudomonas aeruginosa strains isolated from lower respiratory tract infections acquired in an intensive care unit. J Antibiot, 65, 9–13. https://doi.org/10.1038/ja.2011.102
  • 21. Pepi, M., Focardi, S., 2021. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. IJERPH, 18, 5723. https://doi.org/10.3390/ijerph18115723
  • 22. Raza, S., Choi, S., Lee, M., Shin, J., Son, H., Wang, J., Kim, Y.M., 2022. Spatial and temporal effects of fish feed on antibiotic resistance in coastal aquaculture farms. Environmental Research, 212, 113177. https://doi.org/10.1016/j.envres.2022.113177
  • 23. Siri, Y., Precha, N., Sirikanchana, K., Haramoto, E., Makkaew, P., 2023. Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Science of The Total Environment, 896, 165229. https://doi.org/10.1016/j.scitotenv.2023.165229
  • 24. Teixeira, P., Tacão, M., Pureza, L., Gonçalves, J., Silva, A., Cruz-Schneider, M.P., Henriques, I., 2020. Occurrence of carbapenemase-producing Enterobacteriaceae in a Portuguese river: blaNDM, blaKPC and blaGES among the detected genes. Environmental Pollution, 260, 113913. https://doi.org/10.1016/j.envpol.2020.113913
  • 25. Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., Osek, J., 2022. Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11, 1079. https://doi.org/10.3390/antibiotics11081079
  • 26. Zhou, X., Cuasquer, G.J.P., Li, Z., Mang, H.P., Lv, Y., 2021. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. Environment International, 146, 106280. https://doi.org/10.1016/j.envint.2020.106280
  • 27. Venkatesan, M., Fruci, M., Verellen, L.A., Skarina, T., Mesa, N., Flick, R., Pham, C., Mahadevan, R., Stogios, P.J., Savchenko, A., 2023. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nat Commun, 14, 4031. https://doi.org/10.1038/s41467-023-39778-7
  • 28. Waśko, I., Kozińska, A., Kotlarska, E., Baraniak, A., 2022. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. IJERPH, 19, 13829. https://doi.org/10.3390/ijerph192113829
  • 29. Zhang, J., Chen, J., Wang, C., Wang, P., Gao, H., Hu, Y., 2022. Distribution characteristics and controlling factors of typical antibiotics and antibiotic resistance genes in river networks in western area of Wangyu River, China. Water Science and Engineering, 15, 318–327. https://doi.org/10.1016/j.wse.2022.08.001
  • 30. Zhou, X., Cuasquer, G.J.P., Li, Z., Mang, H.P., Lv, Y., 2021. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. Environment International, 146, 106280. https://doi.org/10.1016/j.envint.2020.106280
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9bd9d6c2-58a3-4465-b411-d68031e6b818
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.