Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 43, No. 3 | 303--311
Tytuł artykułu

Comparative study of ecophysiological and biochemical variation between the Baltic and North Sea populations of the invasive soft shell clam Mya arenaria (L. 1758)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seasonal variations of environmental factors, such as temperature and salinity, require metabolic acclimatization in sedentary benthic fauna distributed over a wide geographical range. The soft-shell clam Mya arenaria inhabits the coastal waters of the North Atlantic including North America and Europe. In Europe, M. arenaria populations are distributed from Iceland to the Mediterranean Sea, including the North Sea, the Baltic Sea and the Black Sea. Seasonal changes in physiological parameters (gonad index, condition index, biochemical composition and respiration rate) of M. arenaria from the Baltic Sea (the Gulf of Gdańsk, Poland), and the North Sea (Versee Meer, the Netherlands) were studied. The sex ratio of both populations did not differ from 1:1 and the seasonal gonad index was higher in the Baltic population. The average condition index changed seasonally at both studied sites, and was also higher in the Baltic population (except the autumn) compared to the North Sea. In both studied populations, the content of proteins, lipids and carbohydrates in the soft tissue followed the seasonal variations, and it was higher in the Baltic population. The respiration rate was lower in the Baltic population, and seasonal changes in the respiration rate seem to be correlated with changes in the water temperature. Based on the results obtained in the present study, we suggest that Mya arenaria is characterized by a large phenotypic plasticity and differences in the observed physiological traits are due to acclimatization to ambient environmental conditions.
Wydawca

Rocznik
Strony
303--311
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
  • Department of Marine Ecosystems Functioning Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Department of Marine Ecosystems Functioning Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Department of Marine Ecosystems Functioning Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Department of Marine Ecosystems Functioning Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland, ocemw@ug.edu.pl
Bibliografia
  • 1. Bayne, B.L. (2004). Comparisons of measurements of clearance rates in bivalve molluscs. Mar. Ecol. Prog. Ser. 276:305–306.
  • 2. Beets, D.J., De Groot, T.A.M., Davies, H.A. (2003). Holocene tidal back-barrier development at decelerating sea-level rise: a 5 millennia record, exposed in the western Netherlands. Sediment. Geol. 158:117–144.
  • 3. Behrends, B., Hertweck, G., Liebezeit, G. & Goodfriend. G. (2005). Earliest Holocene occurrence of the softshell clam, Mya arenaria, in the Greifswalder Bodden, Southern Baltic. Mar. Geol. 216:79–82.
  • 4. Beninger, P.G. & Lucas, A. (1984). Seasonal variations in condition, reproductive activity and gross biochemical composition of two species of adult clam reared in common habitat: Tapes decussatus L (Jeffreys) and Tapes philippinarum (Adams, Revve). J. Exp. Mar. Biol. Ecol. 79(1): 19–37.
  • 5. Beukema, J.J. & De Bruin, W. (1977). Seasonal changes in dry weight and chemical composition of the soft partsof the tellinid bivalve Macoma balthica (L.) in the Dutch Wadden Sea. Neth. J. Sea Res., 11: 42–55.
  • 6. Bligh, E.G. & Dyer, W.J. (1959). A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917.
  • 7. Chipperfield, P.N.J. (1953). Observations on the breeding and settlement of Mytilus edulis (L.) in British waters. J. Mar. Biol. Ass. UK. 32, 449–476.
  • 8. Clarke, A. (1991). What is cold adaptation and how should we measure it. Am. Zool., 31(1): 81–92 .
  • 9. Cyberska, B. (1990). Temperatura wody. In A. Majewski (Eds.) Zatoka Gdańska (pp.187–204). Warszawa: IMGW, Wyd. Geologiczne.
  • 10. Dubois, M., Gilles, R., Hamilton, J.K., Rebecs, P.A. Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.
  • 11. Gabbott, P.A. (1983). Developmental and seasonal metabolic activities in marine mollusca. In: K.M. Wilbur (Eds.) The Mollusca. Environmental Biochemistry and Physiology. Vol. 2. (pp.165–219). New York: Academic Press.
  • 12. Gabbott, P.A. & Bayne, B.L. (1976). Energy metabolism. In B. Bayne (Eds.) Marine mussels: their ecology and physiology (pp.121–206). Londyn: Cambridge University Press.
  • 13. Giese, A.C. (1969). A new approach to the biochemical composition of the mollusk body, Oceanogr. Mar. Biol. Ann. Rev. 7: 175–229.
  • 14. Hochachka, P.W. Somero, G.N. (2002). Biochemical adaptation. Mechanism and proces in physiological evolution. Oxford: Oxford University Press.
  • 15. Holland, D.L. (1978). Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In D.C. Malins & J.R. Sargent (Eds.) Biochemical and Biophysical Perspectives in Marine Biology (pp. 85–123). London: Academic Press.
  • 16. Honkoop, P.J.C. & Vander Meer, J. (1998). Experimentally induced effects of water temperature and immersion time on reproductive output of bivalves in the Wadden Sea. J. Exp. Mar. Biol. Ecol. 220(2): 227–246.
  • 17. Houlihan, D.H., (1991). Protein turnover in ectotherms and its relationships to energetics. In R. Gilles (Eds.) Advences in comparative and environmental physiology vol. 7 (pp.1–43). Berlin: Springer Verlag.
  • 18. Hummel, H., Sokołowski, A., Bogaards, R. & Wołowicz, M. (2000). Ecophysiological and genetic traits of the Baltic clam Macoma balthica in the Baltic: differences between populations in the Gdansk Bay due to acclimatization or genetic adaptation? International Review of Hydrobiology. 85: 621–637.
  • 19. Jansen, J.M., Pronker, A.E., Kube, S., Sokołowski, A., Sola J.C., et al. (2007). Geographic and seasonal patterns and limits on adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia, 154: 23–34.
  • 20. Kamermans, P; Hamminga, MA; Tack, JF; et al. (2002), Groundwater effects on diversity and abundance of lagoonal seagrasses in Kenya and on Zanzibar Island (East Africa). Mar. Ecol. Prog. Ser. 231: 75–83.
  • 21. Kingston, P.F., (1974). Studiens on the reproductive cycles of Cardium edule and C.glaucum, Mar. Biol. 28(4), 317–323.
  • 22. Kruk-Dowgiallo, L. & Dubrawski, R. (1998). The state of environment of Gulf of Gdansk coastal zone in autumn1994 and summer 1995. Oceanolog. Stud. 27(4), Gdańsk: 137–158.
  • 23. Lasota, R., Hummel, H. & Wołowicz, M. (2004). Genetic diversity of European populations of the invasive soft-shell clam Mya arenaria (Bivalvia). J. Mar. Biol. Ass. U.K. 84(3): 1051–1056.
  • 24. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin-Phenol reagents. J. Biol. Chem., 193(1), 265–275.
  • 25. Lucas, A. & Beninger, P.G. (1985). The use of physiological condition indices in marine bivalve aquaculture. Aquaculture. 44(3): 187–200.
  • 26. Marsh, J.B. & Weinstein, D.B., (1966). Simple charring method for determinations of lipids. J. Lipid Res. 7: 574–576.
  • 27. Miąc, J., Groth, M. & Wołowicz, M. (1997). Seasonal changes in the Mya arenaria (L.) population from Inner Puck Bay. Oceanologia 39(2): 177–195.
  • 28. Navarro, E., Iglesias, J.I.P. & Larranaga, A. (1989). Interannual variation in the reproductive cycle and biochemical composition of the cockle Cerastoderma edule from Mundaca Estuary (Biscay, North Spain). Mar. Biol. 101(4): 503–511.
  • 29. Newell, R.C. (1969). Effect of fluctuations in temperature on the metabolism of intertidal invertebrates. Am. Zool. 9: 293–307.
  • 30. Newell, R.I.E., Hilbish, T.J., Koehn, R.K. & Newell, C.J. (1982). Temporal variation in the reproductive cycle of Mytilus edulis L. (Bivalvia, Mytilidae) from localities on the east coast of the United States. Bioll. Bull. 162(3): 299–310.
  • 31. Oeschger, R. (1990). Long-term anaerobiosis in sublitoral marine invertebrates from the western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia). Mar. Ecol. Prog. Ser. 59: 133–143.
  • 32. Petersen, K.S., Rasmussen, K.L., Heinemeler J., & Rud, N. (1992). Clams before Columbus? Nature. 359: 679.
  • 33. Pierścieniak, K., Grzymała, J. & Wołowicz, M. (2010). Differences in reproduction and conditio of Macoma balthica and Mytilus trossulus in the Gulf of Gdańsk (Southern Baltic) under anthropogenetic influences. Oceanom. Hydrobiol. St. 39(4): 17–32.
  • 34. Pliński, M. (1995). Phytoplankton of the Gulf of Gdańsk in 1992 and 1993. Oceanologia, 37(1): 123–135.
  • 35. Raat, A.J.P., (2003). Stocking of sea trout, Salmo trutta, in Lake Veere, south-west Netherlands. Fisheries. Manag. Ecol. 10(2): 61–71.
  • 36. Schmidt-Nielsen, K., (1997). Animal Physiology. Adaptation and environment, Cambridge: Cambridge University Press.
  • 37. Strasser, C.A., & Barber, P.H. (2009). Limited variation and genetic structure in softshell clams (Mya arenaria) across their native and introduced range. Conservation Genetics. 10:803–814.
  • 38. Strasser, M. (1999). Mya arenaria- an ancien invader of the North Sea coast. Helgolander Meeresuntersuchungen. 52: 309–324.
  • 39. Stora, G., Arnoux, A., Galas, M. (1995). Time and spatial dynamics of Mediterranean lagoon macrobenthos during an exceptionally prolonged interruption of freshwater inputs. Hydrobiologia 300/301:123–132.
  • 40. Sunila, I. (1981). Reproduction of Mytilus edulis L. (Bivalvia) in a brackish water area, the Gulf of Finland. Ann. Zool. Fennici. 18: 121–128.
  • 41. Szaniawska, A., Janas, U. & Normant, M. (1999). Changes in macrozoobenthos communities induced by antrophogenic eutrophication of the Gulf of Gdansk. In J.S. Gray, W. Jr. Ambrose & A. Szaniawska (Eds.) Biogeochemical Cycling and Sediment Ecology, NATO ASI Series (pp. 147–152). Dordrecht: Kluwer Academic Publishers.
  • 42. Tarnowska, K., Wołowicz, M., Chenuil, A. & Féral, J. P. (2009). Comparative studies on morphometry and physiology of European populations of lagoon specialist Cerastoderma glaucum (Bivalvia). Oceanologia. 51(3): 437–458.
  • 43. Wasmund, N., Nausch, G. & Matthaus, W. (1998). Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankton Res. 20(6): 1099–1117.
  • 44. Wenne, R. & Styczyńska-Jurewicz, E. (1985). Microgeographic differentiation in conditio and biochemical composition of Macoma balthica (L.) from the Gdańsk Bay (South Baltic). Pol. Arch. Hydrobiol. 32: 175–194.
  • 45. Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, CA., Agens, W.I., Oomen, A.G., et al. (2009). Nano-silver — A review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology. 3(2): 109–138.
  • 46. Wiktor, K, (1985). An attempt to determine trophic structure of the bottom fauna in coastal waters of the Gulf of Gdańsk. Oceanologia. 21: 109–121.
  • 47. Wilson, J.G. & Elkaim, B. (1991). Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J. Mar. Biol. Ass. UK 71(1): 169–177.
  • 48. Wołowicz, M., Sokołowski, A., Bawazir, A.S. & Lasota, R., (2006). Ecophysiological differentiation of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk): effect of eutrophication. Limnol. Oceanogr. 51(2): 580–590.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9bc094c1-6640-4253-844a-29630680e6ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.