Czasopismo
2012
|
Vol. 32, Fasc. 1
|
25--39
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present asymptotic results for exit probabilities of stochastic processes in the fashion of large deviations. The main result concerns stochastic processes which satisfy the large deviation principle with an integral type rate function. We also present results for exit probabilities of linear diffusions and particular growth processes, and we give two examples.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
25--39
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133 Rome, Italy, abundo@mat.uniroma2.it
autor
- Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133 Rome, Italy, macci@mat.uniroma2.it
autor
- Dipartimento di Metodi e Modelli per, l’Economia, il Territorio e la Finanza, Sapienza Università di Roma, Via del Castro Laurenziano 9, I-00161 Rome, Italy, gabriele.stabile@uniroma1.it
Bibliografia
- [1] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston 1997.
- [2] J. Callen, S. Govindaraj and L. Xu, Large time and small noise asymptotic results for mean reverting diffusion processes with applications, Econom. Theory 16 (2000), pp. 401-419.
- [3] A. de Acosta, Large deviations for vector valued L´evy processes, Stochastic Process. Appl. 51 (1994), pp. 75-115.
- [4] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, second edition, Springer, New York 1998.
- [5] W. H. Fleming and M. R. James, Asymptotic series and exit time probabilities, Ann. Probab. 20 (1992), pp. 1369-1384.
- [6] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York 1975.
- [7] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York 1984.
- [8] A. Ganesh, N. O’Connell and D. Wischik, Big Queues, Lecture Notes in Math. 1838, Springer, Berlin 2004.
- [9] O. Hammarlid, Tools to estimate the first passage time to a convex barrier, J. Appl. Probab. 42 (2005), pp. 61-81.
- [10] P. E. Kloeden and E. Platen, Numerical Solution of Stochastical Differential Equations, Springer, Berlin-Heidelberg 1992.
- [11] M. Mandjes, Large Deviations for Gaussian Queues, Wiley, Chichester 2007.
- [12] B. K. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Springer, Berlin 2003.
- [13] J. C. Prandini, The limiting behaviour of Solow’s model with uncertainty when the variance goes to zero, Econom. Theory 4 (1994), pp. 799-809.
- [14] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York 1986.
- [15] N. Williams, Small noise asymptotics for a stochastic growth model, J. Econom. Theory 119 (2004), pp. 271-298.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9bbe7865-e2d2-4461-971b-e45a2239b459