Warianty tytułu
Języki publikacji
Abstrakty
Accurate optic disk (OD) localization is an important step in fundus image based computer-aided diagnosis of glaucoma and diabetic retinopathy. Robust OD localization becomes more challenging with the presence of common pathological variations which could alter its overall appearance. This paper presents a novel OD localization method by incorporating salient visual cues of retinal vasculature: (1) global vessel symmetry, (2) vessel component count and (3) local vessel symmetry inside OD region. In the proposed method, a new vessel symmetry line (VSL) measure is designed to demarcate the lines that divide the retinal vasculature into approximately similar halves. The initial OD center location is computed using the highest number of major blood vessel components in the skeleton image. The final OD center localization involves an iterative center of mass computation to exploit the local vessel symmetry in the OD region of interest. The proposed method shows effectiveness in diseased retinas having diverse symptoms like bright lesions, hemorrhages, and tortuous vessels that create potential ambiguity for OD localization. A total of ten publicly available retinal image databases are considered for extensive evaluation of the proposed method. The experimental results demonstrate high average OD detection accuracy of 99.49%, while achieving state-of-the-art OD localization error in all databases.
Czasopismo
Rocznik
Tom
Strony
466--476
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India, rp14@iitbbs.ac.in
autor
- School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India, nbpuhan@iitbbs.ac.in
autor
- School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India, gpanda@iitbbs.ac.in
Bibliografia
- [1] Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EYK, Laude A. Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 2013;43(12):2136–55.
- [2] Muramatsu C, Nakagawa T, Sawada A, Hatanaka Y, Hara T, Yamamoto T, et al. Automated segmentation of optic disc region on retinal fundus photographs: comparison of contour modeling and pixel classification methods. Comput Methods Programs Biomed 2011;101(1):23–32.
- [3] Banerjee S, Kayal D. Detection of hard exudates using mean shift and normalized cut method. Biocybern Biomed Eng 2016;36(4):679–85.
- [4] Sinthanayothin C, Boyce JF, Cook HL, Williamson TH. Automated localisation of the optic disk, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 1999;83(8):902–10.
- [5] Walter T, Klein JC. Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. Proc 2nd Int Symp Med Data Anal. 2001. pp. 282–7.
- [6] Lu S, Lim JH. Automatic optic disc detection from retinal images by a line operator. IEEE Trans Biomed Eng 2011;58 (1):88–94.
- [7] Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 2003;22(8):951–8.
- [8] Foracchia M, Grisan E, Ruggeri A. Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 2004;23(10):1189–95.
- [9] Youssif A, Ghalwash A, Ghoneim A. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter. IEEE Trans Med Imaging 2008;27(1):11–8.
- [10] Mahfouz A, Fahmy A. Fast localization of the optic disc using projection of image features. IEEE Trans Image Process 2010;19(12):3285–9.
- [11] Lu S. Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 2011;30(12):2126–33.
- [12] Welfer D, Scharcanski J, Kitamura CM, Pizzol MMD, Ludwig LWB, Marinho DR. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 2010;40(2):124–37.
- [13] Soares IG, Castelo-Branco M, Pinheiro AMG. Optic disk localization in retinal images based on cumulative sum fields. IEEE J Biomed Health Inform 2016;20(2):574–85.
- [14] Zhang D, Zhao Y. Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform 2014;20(1):333–42.
- [15] Marino C, Penedo MG, Penas M, Carreira MJ, Gonzalez F. Personal authentication using digital retinal images. Pattern Anal Appl 2006;9(1):21–33.
- [16] Panda R, Puhan NB, Panda G. New binary Hausdorff symmetry measure based seeded region growing for retinal vessel segmentation. Biocybern Biomed Eng 2016;36(1):119–29.
- [17] GeethaRamani R, Balasubramanian L. Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybern Biomed Eng 2016;36(1):102–18.
- [18] Panda R, Puhan NB, Panda G. Global vessel symmetry for optic disc detection in retinal images. IEEE National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). 2015. pp. 1–4.
- [19] Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 1993;15(9):850–63.
- [20] Sudha N, Puhan NB, Xia H, Jiang X. Iris recognition on edge maps. IET Comput Vis 2009;3(1):1–7.
- [21] Shonkwiler R. An image algorithm for computing the Hausdorff distance efficiently in linear time. Inform Process Lett 1989;30:87–9.
- [22] Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Tabish S, Ujjwal. Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. IEEE 11th International Symposium on Biomedical Imaging (ISBI). 2014. pp. 53–6.
- [23] Carmona EJ, Rincón M, García-Feijoo J, Martínez-de-la-Casa M. Identification of the optic nerve head with genetic algorithms. Artif Intell Med 2008;43(3):243–59.
- [24] Decencire E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F, et al. Teleophta: machine learning and image processing methods for teleophthalmology. IRBM 2013;34 (2):196–203.
- [25] MESSIDOR. Digital retinal images. Online available from: http://messidor.crihan.fr/download-en.php.
- [26] Kalesnykiene V, Kamarainen JK, Voutilainen R, Pietil J, Klviinen H, Uusitalo H. Diaretdb1 diabetic retinopathy database and evaluation protocol; 2014.
- [27] Kalesnykiene V, Kamarainen J, Lensu L, Sorri I, Uusitalo H, Klviinen H, et al. Diaretdb0: evaluation database and methodology for diabetic retinopathy algorithms. Finland: Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology; 2006.
- [28] Staal J, Abramoff M, Niemeijer M, Viergever M, Ginneken BV. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23(4):501–9.
- [29] Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 2013;7(4):373–83.
- [30] Niemeijer M, Ginneken BV, Cree M, Mizutani A, Quellec G, Sanchez C, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 2010;29(1):185–95.
- [31] Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 2000;19 (3):203–10.
- [32] Aquino A, Gegundez ME, Marin D. Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int J Biol Life Sci 2010;8(11):87–92.
- [33] Ramakanth SA, Babu RV. Approximate nearest neighbour field based optic disk detection. Comput Med Imaging Graph 2014;38(1):49–56.
- [34] Franklin SW, Rajan SE. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 2014;34(2):117–24.
- [35] Giachetti A, Ballerini L, Trucco E, Wilson PJ. The use of radial symmetry to localize retinal landmarks. Comput Med Imaging Graph 2013;37(5):369–76.
- [36] Bekkers E, Loog M, Romeny BH, Duits R. Template matching via densities on the roto-translation group. IEEE Transactions on Pattern Analysis and Machine Intelligence; 2017.
- [37] Dashtbozorg B, Mendonça AM, Campilho A. Optic disc segmentation using the sliding band filter. Comput Biol Med 2015;56:1–12.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9b5ce4c5-6ce0-4ac0-aa2f-e58d3e931aa3