Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, No. 1 | art. no. e149182
Tytuł artykułu

The method for extracting defect levels in the MCT multilayer low-bandgap heterostructures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for defects extraction for a mercury cadmium telluride (MCT) multilayer low-bandgap heterostructure is presented. The N⁺/T/p/T/P⁺/n⁺ epitaxial layer was deposited on a GaAs substrate by a metal-organic chemical vapour deposition (MOCVD). The absorber was optimized for a cut-off wavelength of 𝜆𝑐=6 μm at 230 K. Deep-level transient spectroscopy (DLTS) measurements were conducted for the isolated junctions of the N⁺/T/p/T/P⁺/n⁺ heterostructure. Three localised point defects were extracted within the p-type active layer. Two of them were identified as electron traps and one as a hole trap, respectively.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. e149182
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland, kinga.majkowycz@wat.edu.pl
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267 (2005). https://doi.org/10.1088/0034-4885/68/10/R01.
  • [2] Lax, M. Cascade capture of electrons in solids. Phys. Rev. 119, 1502-1523 (1960). https://doi.org/10.1103/PhysRev.119.1502.
  • [3] Blood, P. & Orton, J. W. The Electrical Characterization of Semi-conductors: Majority Carriers and Electron States. (Academic Press, 1992).
  • [4] Chang, Y. et al. Surface morphology and defect formation mecha-nisms for MCT (211)B grown by molecular beam epitaxy. J. Electron. Mater. 37, 1177-1183 (2008). https://doi.org/10.1007/s11664-008-0477-5.
  • [5] Yang, B., Xin, Y., Rujirawat, S., Browning, N. D. & Sivananthan, S. Molecular beam epitaxial growth and structural properties of HgCdTe layers on CdTe (211)B/Si (211) substrates. J. Appl. Phys. 88, 115-119 (2000). https://doi.org/10.1063/1.373631.
  • [6] Oda, N., Kanno, T., Saga, M., Oikawa, R. & Maejima, Y. Composition characterization methods for HgCdTe epilayers grown by molecular beam epitaxy. J. Cryst. Growth 117, 193-196 (1992). https://doi.org/10.1016/0022-0248(92)90743-3.
  • [7] Zhang, L. H. & Summers, C. A study of void defects in metalorganic molecular-beam epitaxy grown HgCdTe. J. Electron. Mater. 27, 634-639 (1998). https://doi.org/10.1007/S11664-998-0027-1.
  • [8] He, L., Fu, X., Wei, Q. & Wang, W. MBE MCT on alternative sub-strates for FPA applications. J. Electron. Mater. 37, 1189-1199 (2008). https://doi.org/10.1007/s11664-008-0441-4.
  • [9] Koestner, R. J. & Schaake, H. F. Kinetics of molecular-beam epitaxial HgCdTe growth. J. Vac. Sci. Technol. A 6, 2834-2839 (1988). https://doi.org/10.1116/1.575611.
  • [10] Lang, D. V. Deep-level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023-3032 (1974). https://doi.org/10.1063/1.1663719.
  • [11] Piotrowski, A. & Kłos, K. Metal-organic chemical vapor deposition of Hg1-xCdxTe fully doped heterostructures without postgrowth anneal for uncooled MWIR and LWIR detectors. J. Electron. Mater. 36, 1052-1058 (2007). https://doi.org/10.1007/s11664-007-0171-z.
  • [12] Gawron, W. et al. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors. Solid State Electron. 118, 61-65 (2016). https://doi.org/10.1016/j.sse.2016.01.009.
  • [13] Chen, X. D. et al. Deep level defect in Si-implanted GaN n+-pGaN n+-p junction. Appl. Phys. Lett. 82, 3671-3673 (2003). https://doi.org/10.1063/1.1578167.
  • [14] Polla, D. L. & Jones, C. E. Deep level studies of Hg1-xCdxTe. I: Narrow-band-gap space-charge spectroscopy. J. Appl. Phys. 52, 5118-5131 (1981). https://doi.org/10.1063/1.329411.
  • [15] Kobayashi, A., Sankey, O. F. & Dow, J. D. Chemical trends for defect energy levels in Hg(1-x)CdxTe. Phys. Rev. B 25, 6367 (1982). https://doi.org/10.1103/PhysRevB.25.6367.
  • [16] Ciura, L. et al. Investigation of trap levels in HgCdTe IR detectors through low frequency noise spectroscopy. Semicond. Sci. Technol. 31, 035004 (2016). https://doi.org/10.1088/0268-1242/31/3/035004.
  • [17] Myles, C. W. Charge state splittings of deep levels in Hg1-xCdxTe. J. Vac. Sci. Technol. A 6, 2675-2680 (1988). https://doi.org/10.1116/1.575529.
  • [18] Yue, F.-Y. et al. Optical characterization of defects in narrow-gap MCT for infrared detector applications. Chin. Phys. B 28, 017104 (2019). https://doi.org/10.1088/1674-1056/28/1/017104.
  • [19] Capper, P. & Garland, J. Mercury Cadmium Telluride Growth, Properties and Applications. (Wiley, UK, 2011).
  • [20] Herman, M. A. & Pessa, M. Hg1-xCdxTe-Hg1-yCdyTe (0≤x, y≤1) heterostructures: Properties, epitaxy, and applications. J. Appl. Phys. 57, 2671-2694 (1985). https://doi.org/10.1063/1.335408.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9b0da2a3-8aa7-4b37-9abe-838f7cf140b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.