Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to introduce a new extension of preinvexity called strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvexity. Some new integral inequalities of trapezium-type for strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c via Riemann-Liouville fractional integral are established. Also, some new estimates with respect to trapezium-type integral inequalities for strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c via general fractional integrals are obtained. We show that the class of strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.
Czasopismo
Rocznik
Tom
Strony
57--76
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- Department of Mathematics Polytechnic University of Tirana, Tirana, Albania, aklifundo@yahoo.com
autor
- Department of Mathematics Faculty of Technical Science University Ismail Qemali, Vlora, Albania, artionkashuri@gmail.com
Bibliografia
- [1] Alirezaei G., Mathar R., On exponentially concave functions and their impact in information theory, Information Theory and Applications Workshop, San Diego, California, USA, (2018).
- [2] Antczak T., (p, r)-invex sets and functions, J. Math. Anal. Appl., 263(2001), 355-379.
- [3] Antczak T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.
- [4] Aslani S.M., Delavar M.R., Vaezpour S.M., Inequalities of Fejér type related to generalized convex functions with applications, Int. J. Anal. Appl., 16(1) (2018), 38-49.
- [5] Awan M.U., Noor M.A., Noor K.I., Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inform. Sci., 2(12) (2018), 405-409.
- [6] Chen F.X., Wu S.H., Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9(2)(2016), 705-716.
- [7] Chu Y.M., Khan M.A. Khan T.U., Ali T., Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9(5) (2016), 4305-4316.
- [8] Delavar M.R., De La Sen M., Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, 5(1661) (2016).
- [9] Dragomir S.S., On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 33(1) (2002), 45-55.
- [10] Du T.S., Awan M.U., Kashuri A., Zhao S., Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., (2019).
- [11] Du T.S., Liao J.G., Li Y.J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112-3126.
- [12] Jleli M., Samet B., On Hermite-Hadamard type inequalities via fractional integral of a function with respect to another function, J. Nonlinear Sci. Appl., 9(2016), 1252-1260.
- [13] Hristov J., Response functions in linear viscoelastic constitutive equations and related fractional operators, Math. Model. Nat. Phenom., 14(2019), 1-34.
- [14] Katugampola U.N., New approach to a generalized fractional integral, Appl. Math. Comput., 218(2011), 860-865.
- 15] Kashuri A., Liko R., Some new Hermite-Hadamard type inequalities and their applications, Stud. Sci. Math. Hung., 56(1) (2019), 103-142.
- [16] Lara T., Merentes N., Quintero R., Rosales E., On strongly m-convex functions, Math. Aeterna, 5(3) (2015), 521-535.
- [17] Lara T., Merentes N., Quintero R., On inequalities of Fejér and Hermite-Hadamard types for strongly m-convex functions, Math. Aeterna, 5(5) (2015), 777-793.
- [18] Liu W., Wen W., Park J., Hermite-Hadamard type inequalities for MTconvex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.
- [19] Luo C., Du T.S., Khan M.A., Kashuri A., Shen Y., Some k-fractional integrals inequalities through generalized λϕm-MT-preinvexity, J. Comput. Anal. Appl., 27(4)(2019), 690-705.
- [20] Matłoka M., Inequalities for h-preinvex functions, Appl. Math. Comput., 234(2014), 52-57.
- [21] Mihai M.V., Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus, Tamkang J. Math., 44(4)(2013), 411-416.
- [22] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley: New York, NY, USA, 1993.
- [23] Noor M.A., Noor K.I., Strongly exponentially convex functions and their properties, J. Adv. Math. Stud., 12(2) (2019), 177-185.
- [24] Noor M.A., Noor K.I., Strongly exponentially convex functions, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 81/82(2019).
- [25] Noor M.A., Noor K.I., Exponential convex functions, Preprint.
- [26] Noor M.A., Noor K.I., Rashid S., Fractal exponentially m-convex functions and inequalities, Int. J. Anal. Appl., 17(3) (2019), 464-478.
- [27] Omotoyinbo O., Mogbodemu A., Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1(1)(2014), 1-12.
- [28] Pecarić J., Jaksetić J., Exponential convexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti, 515(2013), 81-94.
- [29] Peng C., Zhou C., Du T.S., Riemann–Liouville fractional Simpson’s inequalities through generalized (m, h1, h2)-preinvexity, Ital. J. Pure Appl. Math., 38(2017), 345-367.
- [30] Rashid S., Noor M.A., Noor K.I., Fractional exponentially m-convex functions and inequalities, Int. J. Anal. Appl., 17(3) (2019), 464-478.
- [31] Santos M.A.F.D., Fractional Prabhakar derivative in diffusion equation with non–static stochastic resetting, Physics, 1(2019), 40-58.
- [32] Sarikaya M.Z., Ertuğral F., On the generalized Hermite-Hadamard inequalities, (2017), https://www.researchgate.net/publication/321760443.
- [33] Sarikaya M.Z., Yildirim H., On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3(2007), 231-235.
- [34] Wang H., Du T.S., Zhang Y., k-fractional integral trapezium-like inequalities through (h, m)-convex and (α, m)-convex mappings, J. Inequal. Appl., 2017(311)(2017), 20.
- [35] Zhang Y., Du T.S., Wang H., Shen Y.J., Kashuri A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018(49) (2018), 30.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9adfff22-c374-47f4-8c83-8b41b5931cd9