Czasopismo
2013
|
R. 110, z. 1-AC
|
93--117
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Modelowanie nieparametryczne danych medycznych
Języki publikacji
Abstrakty
The goal of this paper is to apply Generalized Additive Models to medical scheme data. The flexibility of the nonparametric approach is demonstrated based on a real-life empirical example that seeks to model hypertension and the interplay of determinants, such as physiological measurements, medical attributes, demographic and socioeconomic characteristics in predicting blood pressure. The assessment of nonlinear patterns in the response-predictor relationship and the strength of this association are investigated. The extended Generalized Additive Models allow for modeling not only location and scale, but also other distribution parameters, such as kurtosis and skewness.
Celem niniejszego artykułu jest aplikacja uogólnionych modeli addytywnych do danych medycznych. Elastyczność nieparametrycznych rozwiązań przedstawiono na przykładzie modelowania zmiennych determinujących poziom nadciśnienia tętniczego krwi, takich jak atrybuty zdrowotne, fizjologiczne, demograficzne czy charakterystyki społeczno-ekonomiczne. W artykule zbadano nieliniowe zależności (oraz ich siłę) pomiędzy zmiennymi objaśniającymi a nadciśnieniem tętniczym krwi. Rozszerzona wersja modelu pozwala wyznaczyć nie tylko parametry skali i położenia, lecz również inne parametry charakterystyczne rozkładu, takie jak kurtoza i skośność.
Czasopismo
Rocznik
Tom
Strony
93--117
Opis fizyczny
Bibliogr. 20 poz., wz., tab., wykr.
Twórcy
autor
- PAREXEL International
Bibliografia
- [1] Chambers J.M., Hastie T.J., Statistical Models in S, Chapman & Hall, London 1992.
- [2] Cleveland W.S., Grosse E., Devlin S.J., Regression By Local Fitting, Journal of Econometrics, vol. 37, 1988, 87-114.
- [3] Cole T.J., Green P.J., Smoothing reference centile curves: the LMS method and penalized likelihood, Statistical Modeling, vol. 11, 1902, 1305-1319.
- [4] Eilers P.H., Marx B.D., Flexible smoothing with B-splines and penalties, Statistical Science, vol. 11, 1996, 89-121.
- [5] Feig D.I, Kang D.H., Nakagawa T., Mazzali M., Johnson R.J., Uric acid and hypertension, Curr Hypertens Rep., vol. 8(2), 2006, 111-115.
- [6] Friedman J.H., Stuetzle W., Projection Pursuit Regression, Journal of the American Statistical Association, vol. 76, 1981, 817-823.
- [7] Green P.J., Silverman B.W., Nonparametric Regression and Generalized Linear Models, Chapman & Hall, London 1994.
- [8] Gurven M., Blackwell A., Rodríguez A., Stieglitz J., Kaplan H., Does Blood Pressure Inevitably Rise With Age?, Longitudinal Evidence Among Forager-Horticulturalists, Hypertension, vol. 60(1), 2012, 25-33.
- [9] Hastie T.J., Tibshirani R.J., Generalized Additive Models, Chapman & Hall, London 1990.
- [10] Johnson N.L., Kotz S., Kemp A.W., Univariate Discrete Distributions, Wiley, New York 2005.
- [11] Lee J.A., Verleysen M., Nonlinear Dimensionality Reduction, Springer, New York 2007.
- [12] Łukasik S., Kulczycki P., Using Topology Preservation Measures for High-Dimensional Data Analysis in a Reduced Feature Space, Technical Transactions, vol. 1-AC/2012, Cracow University of Technology Press, 5-15.
- [13] Pinheiro J.C., Bates D.M., Mixed-Effects Models in S and S-PLUS, Springer-Verlag, New York 2000.
- [14] Rigby R.A., Stasinopoulos D.M., Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis, Statistical Modeling, vol. 6, 2006, 209-229.
- [15] Royston P., Altman, D.G., Regression using fractional polynomials of continuous covariates: parsimonious parametric modeling, Appl. Statist., vol. 43, 1994, 429-467.
- [16] Stone C.J., Hansen M., Kooperberg C., Truong Y.K., Polynomial splines and their tensor products in extended linear modeling, Annals of Statistics, vol. 25, 1997, 1371-1470.
- [17] Shankar A., Li J., Association between serum gamma-glutamyltransferase level and prehypertension among US adults, Circ J., vol. 71(10), 2007, 1567-1572.
- [18] Tomera J.F., Harakal C., Multiple linear regression analysis of blood pressure, hypertrophy, calcium and cadmium in hypertensive and nonhypertensive states, Food and Chemical Toxicology, vol. 35(7), 1997, 713-718.
- [19] Wahba G., Bayesian Confidence Intervals for the Cross Validated Smoothing Spline, Journal of the Royal Statistical Society, vol. 45, 1983, 133150.
- [20] Webpage of National Health & Nutrition Examination Survey (source of the data set used for the analysis): http://www.cdc.gov/nchs/nhanes.htm.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9acddd16-d792-4d47-9fbd-fe2dcf2c92ed