Czasopismo
2015
|
Vol. 15, no. 4
|
1108--1117
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
An efficient method of vibration investigations of infinite Rayleigh beams applied to the isogeometric analysis called NURBS (non-uniform rational B-splines) is proposed. The research objective is to examine the influence of rotational inertia effects on the dynamic behaviour of the discrete systems approximated by NURBS and compare obtained results with the finite element method (FEM) and exact ones. In NURBS methodology transverse displacements are approximated by quadratic, cubic and quartic B-splines basis functions. For all types of approximations stiffness and consistent mass matrices with rotational inertia effects are found. The equilibrium conditions for an arbitrary interior element are expressed in the form of one difference equation equivalent to the infinite set of equations derived by numerical NURBS formulation for this dynamic problem. The convergence of these equations to the exact differential equations of motion is presented. Assuming the wavy nature of vibration propagation phenomenon the analytical dispersive equations are obtained for various orders of B-spline basis functions. The parametrical analysis of rotational inertia effects on the wave propagation is carried out. The influence of the adopted discretization and the mass distribution is taken into account, as well. The analytical NURBS results are compared with the FEM and exact ones.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1108--1117
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
- Institute of Structural Engineering, Poznan University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland, jerzy.rakowski@put.poznan.pl
autor
- Institute of Structural Engineering, Poznan University of Technology, ul. Piotrowo 5, 60-965 Poznań, Poland, przemyslaw.wielentejczyk@put.poznan.pl
Bibliografia
- [1] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, Inc., Mineola, NY, 2000.
- [2] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering 194 (2005) 4135–4195.
- [3] J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering 195 (2006) 5257–5296.
- [4] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, A. Reali, Computational geometry as a basis for computational structures technology: a look into the future, Innovation in Computational Structures Technology (2006) 1–22.
- [5] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isometric Analysis: Toward Integration of CAD and FEA, John Wiley and Sons, 2009.
- [6] J. Rakowski, Vibrations of infinite one-dimensional periodic systems by finite element method, in: Proceedings of the Second European Conference on Structural Dynamics EURODYN'93, Trondheim, Norway, (1993), pp. 557–562.
- [7] J. Rakowski, P. Wielentejczyk, Vibrations of infinite periodic beams by finite element method, Zeitschrift für Angewandte Mathematik und Mechanik 76 (1996) 411–412.
- [8] J. Rakowski, P. Wielentejczyk, Vibrations of infinite network strip by difference equation method, Zeitschrift für Angewandte Mathematik und Mechanik 77 (1997) 273–274.
- [9] J. Rakowski, P. Wielentejczyk, Dynamic analysis of infinite discrete structures, Foundations of Civil and Environmental Engineering 3 (2002) 91–106.
- [10] L. Brillouin, Wave Propagation in Periodic Structures, Dover Publications, 1953.
- [11] R.H. Orris, M. Petyt, A finite element study of harmonic wave propagation in periodic structures, Journal of Sound and Vibration 33 (1974) 223–236.
- [12] D.J. Mead, Free wave propagation in periodically supported infinite beams, Journal of Sound and Vibration 11 (1970) 181–197.
- [13] D.J. Mead, A new method of analysing wave propagation in periodic structures: applications to periodic Timoshenko beams and stiffened plates, Journal of Sound and Vibration 104 (1) (1986) 9–27.
- [14] D.J. Mead, Y. Yaman, The harmonic response of uniform beams on multiple linear supports: a flexural wave analysis, Journal of Sound and Vibration 141 (3) (1990) 465–484.
- [15] D.J. Mead, Y. Yaman, The response of infinite periodic beams to point harmonic forces: a flexural wave analysis, Journal of Sound and Vibration 144 (3) (1991) 507–530.
- [16] T. Belytschko, W.L. Mindle, Flexural wave propagation behaviour of lumped mass approximations, Computer & Structures 12 (1980) 805–812.
- [17] F. Ihlenburg, I. Babuška, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, International Journal for Numerical Methods in Engineering 38 (1995) 3745–3774.
- [18] T.J.R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Computer Methods in Applied Mechanics and Engineering 197 (2008) 4104–4124.
- [19] J. Rakowski, The interpretation of the shear locking in beam elements, Computers & Structures 37 (5) (1990) 769–776.
- [20] J. Rakowski, A critical analysis of quadratic beam finite elements, International Journal for Numerical Methods in Engineering 31 (1991) 949–966.
- [21] J. Rakowski, A new methodology of evaluation of C0 bending finite elements, Computer Methods in Applied Mechanics and Engineering 91 (1991) 1327–1338.
- [22] O. Weeger, U. Wever, B. Simeon, Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations, Nonlinear Dynamics 72 (2013) 813–835.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9acc186e-1a1b-4d1c-b33b-aab406f96dfc