Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, traveling without systems supporting navigation and guidance tothe destination is hard for us to imagine. The outdoor positioning techniques used in thesesolutions have been mastered mainly by global positioning systems. However, assistingthe navigation of users inside large public buildings still needs to be improved. It matterseven more for persons with special needs, such as visually impaired, seniors, or people inwheelchairs. Determining the correct position of the user inside the complex space of amulti-floor building is a big challenge for such persons. Several methods can help in thismatter. For example, technologies such as RFID, WIFI networks, image recognition,or lidar are used. However, the best solution to this problem is using infrastructuresof low energy transmitters (BLE), called beacons. Then, construct an appropriate map to determine the user’s position to help guide the user to a destination. Nevertheless,to designate such a position, we need to know each transmitter’s signal strength andcoordinates. Because of the physical properties of radio waves, the data collected fromsuch transmitters are often inaccurate. This paper compares two methods, the Kalmanfilter and particle filter, to improve the quality of signal strength data received from BLEtransmitters. As a result, the recommendation of the Kalman filter as the best methodto improve the quality of these data and use it in the developed applications supportingindoor navigation in large buildings is provided.
Słowa kluczowe
Rocznik
Tom
Strony
35--48
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Faculty of Exact and Natural Sciences, Institute of Computer Science, ul. 3 Maja 54, 08-110 Siedlce, Poland, dariusz.mikulowski@uws.edu.pl
autor
- Faculty of Exact and Natural Sciences, Institute of Computer Science, ul. 3 Maja 54, 08-110 Siedlce, Poland, sktoms.pl@gmail.com
Bibliografia
- 1. M. Konarski and W. Zabierowski, “Using Google Maps API along with technology .NET,” Jan. 2010.
- 2. “Open Streed Map,” (last access 2022 11). [Online]. Available: https://www.openstreetmap. org/
- 3. “Getthere gps nav for blind– apps on google play.” (last access 03 2022). [Online]. Available: https://play.google.com/store/apps/detailsid=com.LewLasher.getthere
- 4. “Dot walker pro- blind help project,” (last access 05 2022). [Online]. Available: https: //blindhelp.net/software/dot-walker-pro
- 5. T. Technology, “Seeing asistant,” (last access 11 2021). [Online]. Available: http:// seeingassistant.tt.com.pl/pl/
- 6. R. Fang, K. Su, H. Lu, C. Wang, & C. Lin, (2007). Application of global positioning system (GPS) in earth sciences teaching.
- 7. N. SHINODA, T. TAKEUCHI, D. YAMAGUCHI, S. WATANABE, and T. MIZUMA, “Determination of the absolute position using the lidar sensor,” The Proceedings of the Transportation and Logistics Conference, vol. 2018.27, p. 2303, 01 2018.
- 8. W.M.Y. Wan Bejuri, M.Mohamad, M.Sapri,and M.A.Rosly, “Ubiquitous wlan/camera positioning using inverse intensity chromaticity space-based feature detection and matching: A preliminary result,” 04 2012.
- 9. H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, and Y. Liu, “Enhancing wifi-based localization with visual clues,” 09 2015, pp. 963–974.
- 10. S. Hilsenbeck, D. Bobkov, R. Huitl, G. Schroth, and E. Steinbach, “Graph-based data fusion of pedometer and wifi measurements for mobile indoor positioning,” 09 2014.
- 11. F. Subhan, H. Hasbullah, A. Rozyyev, and S. Bakhsh, “Indoor positioning in bluetooth networks using fingerprinting and lateration approach,” in Proc. of the International Conferenceon International Science and applications ICISA. iCatse, 04 2011.
- 12. D. Mikulowski, A. Niewiadomski, A. Salamonczyk, M. Pilski, P. Switalski, and G. Terlikowski, “Supporting independent navigation of disabled students in university campus using beacons and ontology map.” in Proceedings of EdMedia + Innovate Learning 2022, T. Bastiaens, Ed. New York City, NY, United States: Association for the Advancement of Computing in Education (AACE), June 2022, pp. 1005–1010. [Online]. Available: https://www.learntechlib.org/p/221404
- 13. J. Wang and D. Katabi, “Dude, where’s my card? rfid positioning that works with multipath and non-line of sight,” vol. 43, 08 2013, pp. 51–62.
- 14. P. Strumił o, Elektroniczne Systemy Nawigacji Osobistej dla niewidomych I słabowidzacych. Politechnika Łódzka. Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, 2012.
- 15. W. Bartyna, S. Ambroszkiewicz, M. Faderewski, S. Jakubowski, D. Kocieliński, D. Miku?owski, and G. Terlikowski, “Blind-enT: Making objects visible for blind people,” International Congress Series, vol. 1282, pp. 974–979, 2005.
- 16. O. Alfandi, A. Bochem, K. Bulert, D. Hogrefe, and A. Maier, “Received signal strength indication for movement detection,” 2015 8th International Conference on Mobile Computing and Ubiquitous Networking, ICMU 2015, pp. 82–83, Mar. 2015.
- 17. M. Murata, D. Ahmetovic, D. Sato, H. Takagi, K. M. Kitani, and C. Asakawa, “Smartphone based indoor localization for blind navigation across building complexes,” 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2018.
- 18. M. A. L. Asmaa, K. A. Hatim, “Localisation algorithms research in wireless sensor network based on multilateration and trilateration techniques,” 2014, p. 415–419.
- 19. F. Palumbo, P. Barsocchi, S. Chessa, and J. Augusto Wrede, “A stigmergic approach to indoor localization using bluetooth low energy beacons,” in Proc. of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2015., 08 2015.
- 20. X. Zhao, Z. Xiao, A. Markham, N. Trigoni, and Y. Ren, “Does btle measure up against wifi? a comparison of indoor location performance,” 20th European Wireless Conference, EW 2014, pp. 263–268, 01 2014.
- 21. C. Montella, “The kalman filter and related algorithms: A literature review,” 05 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9a4feb33-1942-4d44-b3c6-ff75351295b7