Czasopismo
2022
|
Vol. 102, nr 1
|
1--13
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents models of three elements: heat exchanger, compressor and expander dedicated to supercritical CO2 cycles (Brayton). The models are built using Ebsilon software and validated against experimental data from available literature. Radial turbomachinery and thin plate heat exchangers were used to meet the demands of the relatively compact design of the S-CO2 cycle elements. It seems that there are no general relationships for the turbomachinery and real characteristics need to be used for constructing the models.
Czasopismo
Rocznik
Tom
Strony
1--13
Opis fizyczny
Bibliogr. 64 poz., fot., rys., tab., wykr.
Twórcy
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland, jaroslaw.milewski@pw.edu.pl
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
autor
- Warsaw Affiliation University, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
- [1] Siddiqui O, Dincer I. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle. J Power Sources 2017;370:138-54. https://doi.org/10.1016/j.jpowsour.2017.10.008.
- [2] Bonaventura D, Chacartegui R, Valverde JM, Becerra JA, Ortiz C, Lizana J. Dry carbonate process for {CO} 2 capture and storage: Integration with solar thermal power. Renew & Sustain ENERGY Rev 2018;82:1796-812. https://doi.org/10.1016/j.rser.2017.06.061.
- [3] Krawczyk P, Szabłowski Ł, Karellas S, Kakaras E, Badyda K. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems. Energy 2018;142:46-54. https://doi.org/10.1016/j.energy.2017.07.078.
- [4] Szablowski L, Krawczyk P, Badyda K, Karellas S, Kakaras E, Bujalski W. Energy and exergy analysis of adiabatic compressed air energy storage system. Energy 2017;138:12-8. https://doi.org/10.1016/j.energy.2017.07.055.
- [5] Michał Leśko, Bujalski W. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage. Arch Thermodyn 2017;38:139-63. https://doi.org/10.1515/aoter-2017-0029.
- [6] Kotowicz J, Bartela L, Dubiel-Jurgas K. Analysis of energy storage system with distributed hydrogen production and gas turbine. Arch Thermodyn 2017;38:65-87. https://doi.org/10.1515/aoter-2017-0025.
- [7] Clúa JGG, Mantz RJ, Battista H De. Optimal sizing of a grid-assisted wind-hydrogen system. Energy Convers Manag 2018;166:402-8. https://doi.org/10.1016/j.enconman.2018.04.047.
- [8] Nadar A, Banerjee AM, Pai MR, Pai R V, Meena SS, Tewari R, et al. Catalytic properties of dispersed iron oxides Fe2O3/MO2 (M = Zr, Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support. Int J Hydrogen Energy 2018;43:37-52. https://doi.org/10.1016/j.ijhydene.2017.10.163.
- [9] Senseni AZ, Meshkani F, Fattahi SMS, Rezaei M. A theoretical and experimental study of glycerol steam reforming over Rh/MgAl2O4 catalysts. ENERGY Convers Manag 2017;154:127-37. https://doi.org/10.1016/j.enconman.2017.10.033.
- [10] Fukuzumi S, Lee Y-M, Nam W. Fuel Production from Seawater and Fuel Cells Using Seawater. ChemSusChem 2017;10:4264-76. https://doi.org/10.1002/cssc.201701381.
- [11] Chen Y, Mojica F, Li G, Chuang P-YA. Experimental study and analytical modeling of an alkaline water electrolysis cell. Int J ENERGY Res 2017;41:2365-73. https://doi.org/10.1002/er.3806.
- [12] Zhang C, Liu Q, Wu Q, Zheng Y, Zhou J, Tu Z, et al. Modelling of solid oxide electrolyser cell using extreme learning machine. Electrochim Acta 2017;251:137-44. https://doi.org/10.1016/j.electacta.2017.08.113.
- [13] Olivier P, Bourasseau C, Bouamama PB. Low-temperature electrolysis system modelling: A review. Renew Sustain ENERGY Rev 2017;78:280–300. https://doi.org/10.1016/j.rser.2017.03.099.
- [14] Mostowy M, Szablowski L. Comparison of the Brayton-Brayton Cycle with the Brayton-Diesel Cycle. J POWER Technol 2018;98:97-105.
- [15] Zhuang Q, Geddis P, Runstedtler A, Bruce C, Clements B, Bruce C. An integrated natural gas power cycle using hydrogen and carbon fuel cells. FUEL 2017;209:76-84. https://doi.org/10.1016/j.fuel.2017.07.080.
- [16] Carlucci AP, de Monte V, de Risi A, Strafella L. Benefits of Enabling Technologies for the ICE and Sharing Strategies in a CHP System for Residential Applications. J ENERGY Eng 2017;143. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000434.
- [17] Kupecki J, Motylinski K. Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance. Energy 2018;152:888-95. https://doi.org/10.1016/j.energy.2018.04.015.
- [18] Prokop TA, Berent K, Iwai H, Szmyd JS, Brus G. A three-dimensional heterogeneity analysis of electrochemical energy conversion in {SOFC} anodes using electron nanotomography and mathematical modeling. Int J Hydrogen Energy 2018;43:10016-30. https://doi.org/10.1016/j.ijhydene.2018.04.023.
- [19] Pianko-Oprych P, Hosseini SM. Dynamic Analysis of Load Operations of Two-Stage {SOFC} Stacks Power Generation System. ENERGIES 2017;10:2103. https://doi.org/10.3390/en10122103.
- [20] Kupecki J, Motylinski K, Skrzypkiewicz M, Wierzbicki M, Naumovich Y. Preliminary electrochemical characterization of anode supported solid oxide cell (AS-SOC) produced in the Institute of Power Engineering operated in electrolysis mode (SOEC). Arch Thermodyn 2017;38:53-63. https://doi.org/10.1515/aoter-2017-0024.
- [21] Zheng Y, Luo Y, Shi Y, Cai N. Dynamic Processes of Mode Switching in Reversible Solid Oxide Fuel Cells. J ENERGY Eng 2017;143. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000482.
- [22] Barelli L, Bidini G, Cinti G, Ottaviano A. Study of SOFC-SOE transition on a RSOFC stack. Int J Hydrogen Energy 2017;42:26037-47. https://doi.org/10.1016/j.ijhydene.2017.08.159.
- [23] Genc O, Toros S, Timurkutluk B. Geometric optimization of an ejector for a 4~{kW} {SOFC} system with anode off-gas recycle. Int J Hydrogen Energy 2018;43:9413-22. https://doi.org/10.1016/j.ijhydene.2018.03.213.
- [24] Azizi MA, Brouwer J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization. Appl Energy 2018;215:237-89. https://doi.org/10.1016/j.apenergy.2018.01.098.
- [25] Lorenzo G De, Fragiacomo P. Electrical and thermal analysis of an intermediate temperature {IIR}-{SOFC} system fed by biogas. Energy Sci {&} Eng 2018;6:60-72. https://doi.org/10.1002/ese3.187.
- [26] Ferrel-Alvarez AC, Dominguez-Crespo MA, Cong H, Torres-Huerta AM, Brachetti-Sibaja SB, la Cruz W. Synthesis and surface characterization of the La0.7-xPrxCa0.3MnO3 (LPCM) perovskite by a non-conventional microwave irradiation method. J Alloys Compd 2018;735:1750-8. https://doi.org/10.1016/j.jallcom.2017.11.306.
- [27] Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, et al. Nanomaterials for solid oxide fuel cells: A review. Renew Sustain ENERGY Rev 2018;82:353-68. https://doi.org/10.1016/j.rser.2017.09.046.
- [28] Peksen M. Safe heating-up of a full scale {SOFC} system using 3D multiphysics modelling optimisation. Int J Hydrogen Energy 2018;43:354-62. https://doi.org/10.1016/j.ijhydene.2017.11.026.
- [29] Badur J, Lemanski M, Kowalczyk T, Pawel Z, Kornet S. Verification of zero-dimensional model of sofc with internal fuel reforming for complex hybrid energy cycles. Chem Process Eng Chem I Proces 2018;39:113–28. https://doi.org/10.24425/119103.
- [30] Dillig M, Plankenbuehler T, Karl J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming. J Power Sources 2018;373:139-49. https://doi.org/10.1016/j.jpowsour.2017.11.007.
- [31] Dzierzgowski K, Wachowski S, Gojtowska W, Lewandowska I, Jasinski P, Gazda M, et al. Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties. Ceram Int 2018;44:8210-5. https://doi.org/10.1016/j.ceramint.2018.01.270.
- [32] Danilov NA, Tarutin AP, Lyagaeva JG, Pikalova EY, Murashkina AA, Medvedev DA, et al. Affinity of {YBaCo} 4 O 7+$\updelta$ -based layered cobaltites with protonic conductors of cerate-zirconate family. Ceram Int 2017;43:15418-23. https://doi.org/10.1016/j.ceramint.2017.08.083.
- [33] Lyagaeva J, Vdovin G, Hakimova L, Medvedev D, Demin A, Tsiakaras P. BaCe0.5Zr0.3Y0.2-xYbxO3-delta proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2017;251:554-61. https://doi.org/10.1016/j.electacta.2017.08.149.
- [34] Davoodi AH, Pishvaie MR. Plant-Wide Control of an Integrated Molten Carbonate Fuel Cell Plant. J Electrochem Energy Convers Storage 2018;15:21005. https://doi.org/10.1115/1.4039043.
- [35] Chakravorty J, Sharma G, Bhatia V. Analysis of a DVR with Molten Carbonate Fuel Cell and Fuzzy Logic Control. Eng Technol Appl Sci Res 2018;8:2673-9.
- [36] Jienkulsawad P, Saebea D, Patcharavorachot Y, Kheawhom S, Arpornwichanop A. Analysis of a solid oxide fuel cell and a molten carbonate fuel cell integrated system with different configurations. Int J Hydrogen Energy 2018;43:932-42. https://doi.org/10.1016/j.ijhydene.2017.10.168.
- [37] Wu M, Zhang H, Liao T. Performance assessment of an integrated molten carbonate fuel cel-thermoelectric devices hybrid system for combined power and cooling purposes. Int J Hydrogen Energy 2017;42:30156-65. https://doi.org/10.1016/j.ijhydene.2017.10.114.
- [38] Accardo G, Frattini D, Yoon SP, Ham HC, Nam SW. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells. J Power Sources 2017;370:52-60. https://doi.org/10.1016/j.jpowsour.2017.10.015.
- [39] Cheon Y, Lee D, Lee I-B, Sung SW. A new {PID} auto-tuning strategy with operational optimization for {MCFC} systems. 2013 9th Asian Control Conf., IEEE; 2013. https://doi.org/10.1109/ascc.2013.6606304.
- [40] Samanta S, Ghosh S. Techno-economic assessment of a repowering scheme for a coal fired power plant through upstream integration of SOFC and downstream integration of MCFC. Int J Greenh GAS Control 2017;64:234-45. https://doi.org/10.1016/j.ijggc.2017.07.020.
- [41] Czelej K, Cwieka K, Colmenares JC, Kurzydlowski KJ. Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells. J Mater Chem A 2017;5:13763-8. https://doi.org/10.1039/c7ta02011b.
- [42] Bae SJ, Ahn Y, Lee J, Lee JI. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J Power Sources 2014;270:608-18. https://doi.org/10.1016/j.jpowsour.2014.07.121.
- [43] Feher EG. The supercritical thermodynamic power cycle. Energy Convers 1968;8:85-90. https://doi.org/http://dx.doi.org/10.1016/0013-7480(68)90105-8.
- [44] Dostal V, Driscoll MJ, Hejzar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Adv Nucl Power Technol Progr 2004.
- [45] Driscoll MJ. Supercritical CO2 Plant Cost Assessment 2004.
- [46] Dostal V, Driscoll MJ, Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.
- [47] Pickard SAWRFRMEVGERPS. Operation and Analysis of a Supercritical CO2 Brayton Cycle. SANDIA Rep 2010.
- [48] Pecnik Rene; Colonna P. Accurate CFD Analysis of a Radial Compressor Operating with Supercritical CO2. Supercrit. CO2 Power Cycle Symp., 2011.
- [49] Schmitt J, Amos D, Custer C, Willis R, Kapat J. Study of A Supercritical CO2 Turbine with TIT fo 1350K for Brayton Cycle with 100MW class output: Aerodynamic analysis of Stage 1 Vane. 4th Int Symp - Supercrit CO2 Power Cycles 2014.
- [50] Liu Z, Luo W, Zhao Q, Zhao W, Xu J. Preliminary Design and Model Assessment of a Supercritical {CO}2 Compressor. Appl Sci 2018;8:595. https://doi.org/10.3390/app8040595.
- [51] Zhao Q, Mecheri M, Neveux T, Privat R, Jaubert J-N. Selection of a Proper Equation of State for the Modeling of a Supercritical CO2 Brayton Cycle: Consequences on the Process Design. Ind Eng Chem Res 2017;56:6841-53.
- [52] Nassar A, Moroz L, Burlaka M, Pagur P, Govoruschenko Y. Designing Supercritical CO2 Power Plants using an Integrated System. Power-Gen India Cent Asia 201AD.
- [53] Casey M, Robinson C. A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. J Turbomach 2012;135:21034. https://doi.org/10.1115/1.4006590.
- [54] Kus B, Nekså P. Development of one-dimensional model for initial design and evaluation of oil-free Co2 turbo-compressor. Int J Refrig 2013;36:2079-90. https://doi.org/10.1016/j.ijrefrig.2013.05.009.
- [55] Serrano IP, Cantizano A, Linares JI, Moratilla BY. Modeling and sizing of the heat exchangers of a new supercritical {CO}2 Brayton power cycle for energy conversion for fusion reactors. Fusion Eng Des 2014;89:1905-8. https://doi.org/10.1016/j.fusengdes.2014.04.039.
- [56] Li H, Zhang Y, Zhang L, Yao M, Kruizenga A, Anderson M. {PDF}-based modeling on the turbulent convection heat transfer of supercritical {CO} 2 in the printed circuit heat exchangers for the supercritical {CO} 2 Brayton cycle. Int J Heat Mass Transf 2016;98:204-18. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.001.
- [57] Cui X, Guo J, Huai X, Cheng K, Zhang H, Xiang M. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical {CO} 2. Int J Heat Mass Transf 2018;121:354-66. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015.
- [58] Meshram A, Jaiswal AK, Khivsara SD, Ortega JD, Ho C, Bapat R, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical {CO} 2 power cycle applications. Appl Therm Eng 2016;109:861-70. https://doi.org/10.1016/j.applthermaleng.2016.05.033.
- [59] Muzychka YS. Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers. Int J Therm Sci 2007;46:245-52. https://doi.org/10.1016/j.ijthermalsci.2006.05.002.
- [60] Bejan A. General criterion for rating heat-exchanger performance. Int J Heat Mass Transf 1978;21:655-8. https://doi.org/10.1016/0017-9310(78)90064-9.
- [61] Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl Energy 2013;111:957-70.
- [62] Pasch J, Conboy T, Fleming D, Rochau G. Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description. SANDIA Rep 2012.
- [63] Conboy T, Pasch J, Fleming D. Control of a Supercritical {CO}2Recompression Brayton Cycle Demonstration Loop. Vol. 8 Supercrit. {CO}2 Power Cycles$\mathsemicolon$ Wind Energy$\mathsemicolon$ Honor. Award., ASME; 2013. https://doi.org/10.1115/gt2013-94512.
- [64] Milewski J, Badyda K, Miller A. Gas Turbines in Unconventional Applications. Effic. Perform. Robustness Gas Turbines, InTech; 2012. https://doi.org/10.5772/37321
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9a4e834c-362e-4104-8728-34ad367d4030