Warianty tytułu
Języki publikacji
Abstrakty
This study focused on investigating the heat transfer and flow dynamics of a catalyst granule within a pilot calciner, employing both numerical modeling and computational fluid dynamics. The research comprised two primary components: (1) Simulation of the gas flow within the pilot calciner using the Eulerian–Eulerian approach, treating gases and catalyst particles as distinct phases – gas and granular. The model, encapsulating both heat transfer and flow processes, was developed in Fluent software version 16.0. Its accuracy was confirmed against empirical data from a pilot-scale calciner unit. (2) Subsequent to validation, the model was utilized to examine the distribution characteristics within the flow field, including the temperature profiles of gas and particles, the vector velocity field of the gas across different phases, and the overall heat transfer coefficient. This investigation aims to enhance the understanding of the complex heat transfer and flow dynamics in calciners, facilitating the optimization of operational parameters, performance, and structure of pilot-scale equipment. Furthermore, it provides foundational data pertinent to the future exploration of real-world industrial applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31--41
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- College of New Energy, China University of Petroleum Huadong (East China), Qingdao, China
- National Research Center for Drying Technology and Equipment Engineering Technology, Tianhua Chemical Machinery and Automation Institute Co., Ltd., Lanzhou, China
autor
- College of New Energy, China University of Petroleum Huadong (East China), Qingdao, China, b20150016@s.upc.edu.cn
autor
- Sinopec Research Institute of Petroleum Processing, Beijing, China
Bibliografia
- 1. Serrano, D.P., García, R.A., Linares, M. & Gil, B. (2012). Influence of the calcination treatment on the catalytic properties of hierarchical ZSM-5. Chem. Eng. Sci. 179(1), 91–101. DOI: 10.1016/j.cattod.2011.06.029.
- 2. Scherzer, J. (1990). Octane-enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catal. Rev. Sci. Eng. 31(3), 215–354. DOI: 10.1002/chin.199025325.
- 3. Kunkeler, P.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C. & van Bekkum, H. (1998). The Relationship Between Calcination Procedure, Aluminum Configuration and Lewis Acidity. Chem. Eng. Sci. 180(2), 234–244. DOI: 10.1006/jcat.1998.2273.
- 4. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V., Fernandes-Machado & Nádia R.C. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts. Mater. Char. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.
- 5. Shahrbabaki, A.S., Kalantar, V. & Mansouri, S.H. (2023). Analytical and numerical considerations of the minimum fluidization velocity of the molybdenite particles. Mater. Mater. Mech. 10(4), 769–776. DOI: 10.1007/s40571-022-00528-z.
- 6. Yang, L. & Farouk, B. (1997). Modeling of solid particle flow and heat transfer in rotary kiln calciners. J. Air & Waste Manage. Assn. 47(11), 1189–1196. DOI: 10.1080/10473289.1997.10464069.
- 7. Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Tatschl, R. & Duić, N. (2012). CFD analysis of a cement calciner for a cleaner cement production. Chem. Eng. Trans. 29, 1513–1518. DOI: 10.3303/CET1229253.
- 8. Johansson, S., Westerberg, L.G. & Lundstrom, T.S. (2014). Gas and particle flow in a spray roaster. JAFM, 7(2), 187–196. DOI: 10.36884/jafm.7.02.20339.
- 9. Marsh, C. (2009). CFD modelling of alumina calciner furnaces. In Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, 1-4.
- 10. Kanellis, G., Zeneli, M., Nikolopoulos, N., Hofmann, C., Ströhle, J., Karellas, S. & Konttinen, J. (2023). CFD modelling of an indirectly heated calciner reactor, utilized for CO2 capture, in an Eulerian framework. Fuel, 346, 128251. DOI: 10.1016/j.fuel.2023.128251.
- 11. Chilka, A.G. & Ranade, V.V. (2019). CFD modelling of almond drying in a tray dryer. Chem. Eng. Sci. 97(2), 560–572. DOI: 10.1002/cjce.23357.
- 12. Zeneli, M., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., Karellas, S. & Kakaras, E. (2017). Simulation of the reacting flow within a pilot scale calciner by means of a three phase TFM model. Fuel Process. Technol. 162, 105–125. DOI: 10.1016/j.fuproc.2017.03.032.
- 13. Havryliv, R. & Maystruk, V. (2017). Development of combustion model in the industrial cyclone-calciner furnace using CFD-modeling. Chem. Chem. Technol. 11(1), 71–80. DOI: 10.23939/chcht11.01.071.
- 14. Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol. 340, 99–115. DOI: 10.1016/j.powtec.2018.09.008.
- 15. Xiao, J., Huang, J., Zhong, Q., Zhang, H. & Li, J. (2016). Modeling and simulation of petroleum coke calcination in pot calciner using two-fluid model. Jom, 68, 643–655. DOI: 10.1007/s11837-015-1667-2.
- 16. Kinekar, S., Mone, S., Taqi, A., Mane, P., Gawali, B. & Vitankar, V. (2021). NOX reduction in calciner using air staging and raw meal split technology. Mat. Today, 45, 3091–3096. DOI: 10.1016/j.matpr.2020.12.143.
- 17. Zhu, J. & Kao, H. (2021). Numerical Simulation of Co-Combustion of Pulverized Coal and Different Proportions of Refused Derived Fuel in TTF Precalciner. JRM. 9(7), 1329. DOI: 10.32604/jrm.2021.015079.
- 18. Xu, J. & Ma, Y. (2018). Simulation Analysis of Gas-solid Two-phase Flow for Heating Catalyst in Rotary Multi-cavity Kiln. ICMT., 398(1) 012010. DOI: 10.1088/1757-899X/398/1/012010.
- 19. Liu, X. & Jiang, J. (2004). Mass and heat transfer in a continuous plate dryer. Drying Technol. 22(7), 1621–1635. DOI: 10.1081/DRT-200025619.
- 20. Schlünder, E.U. (1988). On the mechanism of the constant drying rate period and its relevance to diffusion controlled catalytic gas phase reactions. Chem. Eng. Sci. 43(10), 2685–2688. DOI: 10.1016/0009-2509(88)80012-5.
- 21. Chaudhuri, B., Muzzio, F.J. & Tomassone, M.S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chem. Eng. Sci. 61(19), 6348–6360. DOI: 10.1016/j.ces.2006.05.034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9a43f049-541a-45f1-9ae0-3d7deb97fb1d