Warianty tytułu
Analiza globalnej wrażliwości wielostanowych modeli niezawodności markowa dla urządzeń energetycznych aproksymowanych za pomocą rozwinięcia w chaos wielomianowy
Języki publikacji
Abstrakty
Reliability and availability of electric power system equipment (e.g., generator units, transformers) are often evaluated by defining and solving Markov models. Transition rates among the identified equipment states are estimated from experimental and field data, or expert judgment, with inevitable uncertainty. For model understanding and to guide validation and confidence building, it is of interest to investigate the effects of the uncertainty in the input transition rates on the output reliability and availability. To this aim, Global Sensitivity Analysis (GSA) can be used for defining importance (sensitivity) indexes that allow a ranking of the transition rates with respect to their influence on the uncertainty in the output. In general, GSA requires a large number of model evaluations. In this paper, a metamodel is defined to estimate the performance index of interest (e.g. reliability or availability). The metamodel is built based on polynomial chaos expansion (PCE), a multidimensional polynomial model approximation whose coefficients are determined by evaluating the model in a reduced set of predetermined values of the input. The proposed approach is illustrated on a power generating unit.
Niezawodność i gotowość urządzeń elektroenergetycznych jest często oceniana poprzez definiowanie i rozwiązywanie modeli łańcuchów Markowa. Współczynniki prawdopodobieństwa przejścia pomiędzy zdefiniowanymi stanami urządzeń są oceniane na podstawie badań doświadczalnych i danych otrzymanych dla realnych systemów lub są przedmiotem oceny ekspertów. W celu zrozumienia istoty modelu, kierowania procesem jego walidacji oraz budowania zaufania należy się zainteresować zbadaniem wpływu niepewności w określeniu wejściowych współczynników przejścia w modelu Markowa na uzyskiwane wyjściowe wartości niezawodności i gotowości. W tym celu został zdefiniowany metamodel pozwalający na określenie współczynników wpływu na parametry eksploatacyjne (np. niezawodność czy gotowość). Ten metamodel został zbudowany w oparciu o rozwinięcie w chaos wielomianowy, wielowymiarowy modelu aproksymacji wielomianowej, gdzie współczynniki modelu są określane poprzez ewaluację modelu dla zredukowanego zbioru predefiniowanych wartości wejściowych. Zaproponowany sposób jest zilustrowany na przykładzie bloku elektroenergetycznego.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
59--70
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Universidad Central de Venezuela, Caracas, Venezuela
autor
- Dipartimento di Energia, Politecnico di Milano, Milano, Italy
Bibliografia
- [1] Billinton R., Allan R.: "Reliability Evaluation of Engineering Systems", Second Edition, Plenum Press 1992
- [2] Lisnianski A., Elmakias D., Laredo D., BenHaim H.: A multi-state Markov model for a short-term reliability analysis of a power generating unit, Reliability Engineering and System Safety, 2012, 98, ,1–6
- [3] Billinton R, Fotuhi-Firuzabad M, Sidhu TS.: Determination of the optimum routine test and self checking intervals in protective relaying using a reliability model. IEEE Trans Power Syst 2002; 17(3).
- [4] Seyedi H, Fotuhi M, Sanaye-Pasand M.: An extended Markov model to determine the reliability of protective system. In: Power India conference, IEEE; April 1, 2006. p. 10–12.
- [5] Aminifar F, Firuzabad MF, Billinton R.: Extended reliability model of a unified power flow controller. Gener Transm Distrib IET 2007;1(6):896–903.
- [6] Sefidgaran M., Mirzaie M., Ebrahimzadeh A.: Reliability model of the power transformer with ONAF cooling, Electrical Power and Energy Systems 35 (2012) 97–104
- [7] Do Van P., Barros A., Bérenguer C.: Reliability importance analysis of Markovian systems at steady state using perturbation analysis, Reliability Engineering and System Safety, 2008, 93, 1605–1615.
- [8] Do Van P., Barros A., Bérenguer C.: From differential to difference importance measures for Markov reliability models, European Journal of Operational Research, 2010, 513–521
- [9] Zio E.: Computational Methods For Reliability And Risk Analysis, Series on Quality, Reliability & Engineering Statistics Vol 14, World Scientific Publishing Company, 2009
- [10] Marseguerra M., Padovani E., Zio E., Tarantola S., Saltelli A.: Sensitivity Analysis of a non-linear reliability model. Proceeding of the European Conference on Safety and Reliability ESREL 1998, Norway, 1998, pp. 1395-1401.
- [11] Aperjis, D., White D.C., Schweppe F.C., Mettler M., Merrill H.M.: Energy Strategy Planning for Electric Utilities Part II, Smarte Methodology Case Study. IEEE Transactions on Power Apparatus and Systems 1982, PAS-101(2): 347-355.
- [12] Merrill, H.M. and Schweppe F.C.: Energy Strategy Planning for Electric Utilities Part II, Smarte Methodology. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(2): 340-346.
- [13] Rocco C.M.: Effects of transition-rate uncertainty on steady-state probabilities of Markov models using Interval Arithmetic, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability April 2012 vol. 226 no. 2 234-245
- [14] Rocco C.M.: “Affine Arithmetic for assessing the uncertainty propagation on steady-state probabilities of Markov models due to uncertainties in transition rates”, submitted to Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2012
- [15] Saltelli A., Chan K., Scott E.M.: “Sensitivity Analysis”, John Wiley & Sons, Probability and Statistics series, 2000
- [16] Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: “Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models”, John Wiley & Sons, Probability and Statistics series, 2004
- [17] Campolongo F., Saltelli A., Cariboni J.: From screening to quantitative sensitivity analysis. A unified approach Computer Physics Communications 182 (2011) 978–988
- [18] Haro E., Anstett-Collin F., Basset M., Sensitivity study of dynamic systems using polynomial Chaos, Reliability Engineering and System Safety, 2012, 104 , pp. 15-26
- [19] Ghanem R., Spanos P. D., Polynomial chaos in stochastic finite elements, Journal of Applied Mechanics 57 (1990) 197–202.
- [20] Sudret B., Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering and System Safety 93 (7) (2008) 964–979.
- [21] Crestaux T., Maitre O. L, Martinez J., Polynomial chaos expansion for sensitivity analysis, Reliability Engineering & System Safety 94 (2009) 1161-1172.
- [22] Oladyshkin S., Class H., Helmig R., Nowak W., A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations, Advances in Water Resources 34 (2011) 1508–1518. doi:10.1016/j.advwatres.2011.08.005.
- [23] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D. Saisana, M., Tarantola, S.: “Global Sensitivity Analysis: The Primer”, John Wiley & Sons, 2008
- [24] Wiener N., The homogeneous chaos, American Journal of Mathematics 60 (4) (1938) 897-936.
- [25] Xiu D., Karniadakis G., The Wiener-Askey polynomials chaos for stochastic Differential equations, Journal of Scientific Computing 26 Volume 24 Issue 2, 2002, 619 - 644.
- [26] Petras K., Smolyak cubature of given polynomial degree with few nodes for increasing dimension, Numerische Mathematik, 2002, Volume 93, Number 4, Pages 729-753
- [27] Baudin M., Martinez J., Polynômes de chaos sous Scilab via librairie NISP, in: 42 emes Journees de Statistique, 2010.
- [28] Heiss F., Winschel V., Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics, Volume 144, Issue 1, May 2008, Pages 62–80
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9a2d85e7-219f-49f1-bb22-6cc0ca0a410c