

Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2022.

 reserved.
DOI: 10.26408/srsp-2022-14.

195

Walkowiak Tomasz, 0000-0002-7749-4251
, , Poland, Tomasz.Walkowiak{at}pwr.edu.pl

Mazurkiewicz Jacek, 0000-0002-7708-907X

, 0000-0003-1452-3067

 0000-0003-3839-1580
Przemyslaw.Sliwinski{at}pwr.edu.pl

Performance analysis of intelligent agents in complex event processing
systems

Keywords

complex event processing system, intelligent agent, deep learning, performance analysis

Abstract

The chapter discusses the performance aspects of intelligent agents in Complex Event Processing (CEP)
systems. The contemporary solution for implementing CEP systems is based on available software com-
ponents (Siddhi) and modern implementation techniques (Kubernetes). However, Siddhi lacks the im-
plementation of modern deep learning algorithms. Hence, the concept of intelligent agent is introduced.
A case study with a set of intelligent agents designed to handle real-world events related to environmen-
tal data monitoring is presented. The results of the case study discussion indicate a reasonable scale for
tuning the Event Processing Element (EPA) topology with correct responses and the required output
performance level. These results have important implications for the practical implementation of the
EPA structure, i.e., the use of GPUs in CEP systems. Finally, the results of performance analysis of
different implementations of intelligent agents are presented and discussed.

1. Introduction

The operation of various modern security moni-
toring systems is based on real time processing of
stream of events coming from the environment.
The functionality that the system must provide
can be defined as detecting some specific tem-
poral and semantic patterns in the stream of
events, and then evaluating their various charac-
teristics and generating appropriate responses be-
cause of their classification. It implies the usage
of modern machine learning method as an intelli-
gent element of the system. An event processing
system forms a complex network of agents that
process events and communicate with each other
by sending generated event messages.

The ability to provide responses in a desired time
frame and the ability to handle large, cumulative
workloads (Sugier et al., 2019) is an important as-
pect of an event processing system, especially in
the field of security monitoring of the environ-
ment characterized by different sources of events
with various parameters.
Within this chapter the authors discus perfor-
mance aspects of intelligent agents within Com-
plex Event Processing (CEP) systems. The chap-
ter is structured as follows. Firstly, we present
the actual methods of deploying CEP systems.
Next, we define the intelligent agent problem and
the idea of CEP system creation using them.
Section 4 presents the case study with the set of

Walkowiak Tomasz, Mazurkiewicz Jacek, Sugier J

196

intelligent agents dedicated to real events caused
the environmental data monitoring. Finally, per-
formance analysis results are presented and dis-
cussed based on the working point of the system
fixed by case study description.

2. Complex event processing system

deployment

There are well-known methods and software en-
vironments for data streaming that can be useful
for agent-to-agent dialogue in CEP systems. Sid-
dhi is a native streaming and complex event pro-
cessing engine in the cloud that understands
streaming SQL queries to capture events from
various data sources, process them, detect com-
plex conditions, and publish the output to various
endpoints in real-time. Siddhi is an event-driven
system in which all the data it fetches, processes,
and sends is modeled as events. Therefore, Siddhi
can play an important role in any event-driven ar-
chitecture. This software provides analytics oper-
ators to manage data flow, compute analytics re-
sults, and detect patterns on event data from a
wide variety of live data sources, enabling devel-
opers to create applications that sense, think, and
act in real time. So, we can create a type of pro-
cessing where incoming event data is distilled
down to more useful, higher-level complex event
data that provides insight into what is happening.
The computation is triggered by the reception of
event data. They are used in highly demanding
continuous intelligence applications that increase
situational awareness and support real-time deci-
sion making. Streaming data integration is a way
of integrating several systems by processing, cor-
relating, and analyzing data in memory while con-
tinuously transferring real-time data from one sys-
tem to another. Siddhi can continuously monitor
event streams and send alerts and notifications.
This paves the way for real-time dynamic decision
making based on predefined rules and the current
state of the connected systems (Suhothayan et al.,
2011). Siddhi is equipped with a set of basic ma-
chine learning algorithms (Hastie et al., 2018), but
their number is limited and do not include modern
deep learning solutions. Therefore, there is a need
to extend the Siddhi based CEP system with intel-
ligent agents that could provide contemporary ML
algorithms.
The CEP system can be seen as a collection of co-
operating agents and therefore falls into the group

of applications with microservice architecture
(Wolff, 2016). The analyzed application area, i.e.,
security monitoring, requires high availability. A
state-of-the-art solution for implementing micro-
services-based applications in high availability
clusters is Kubernetes (Kubernetes, 2022). It is an
open-source platform for automatically deploy-
ing, scaling, and managing containerized applica-
tions. Kubernetes provides the ability to heal de-
ployed services by restarting failed containers and
replacing or rescheduling containers when their
hosts fail. However, restarting failed containers is
not the only aspect of high availability. To handle
large and cumulative workloads the performance
of individual agents must also be ensured. This is
especially important for intelligent agents execut-
ing computationally complex machine learning
algorithms.

3. Types of intelligent agents

From the deployment and performance of CEP,
intelligent agents could be divided into two
groups: stateless and stateful. Stateless do not
have any internal memory, they produce the out-
put based on current inputs. Where stateful have
an internal state that is changed during analysis of
a new event and must be kept for processing of a
new event.
Most of AI classification algorithms like multi-
layer perceptron, decision trees or SVM (Hastie et
al., 2018) models are stateless agents. They are
feed with input data and produce the output (i.e.,
the id of a class for classification tasks or a real
number for regression problems). They have an
internal state, the model fit during training, but its
read-only and is not changing during generation
of output (model inference).
The stateful agents works differently, they process
a sequence of events by analyzing the current
event and internal state produced during the pre-
vious event analysis. The Hidden Markov Models
(Limnios & Oprisan, 2001) and LSTM recurrent
networks (Greff et al., 2017) are examples of such
style of processing. LSTM networks are very suc-
cessful in any sequence analysis for example in
natural learning processing (Peters et al., 2018),
where text is seen a sequence of words of even
letters. However, due to many hidden states re-
quire a lot of computing resources, especially in
BI-LSTM (Greff et al., 2017) versions.
Note that stateless agents can work not only on the

Performance analysis of intelligent agents in complex event processing systems

197

current event, but also on a sequence of past
events. Since most CEP engines feature event
stream windowing (Suhothayan et al., 2011) it is
possible to aggregate the historical event into the
input to stateless intelligent agent. This can be
done in sliding mode (overlapping windows) or in
batch mode (windows with no overlapping
events). This allows the intelligent agent to pro-
cess data in stateless mode but make decisions
based on a sequence of current and historical data.
Feeding historical data to a classifier as separate
values is a time series analysis scheme commonly
used in machine learning. For example, if we as-
sume that today temperature is a function of last
n-days temperatures and the amount of precipita-
tion in the previous days, we can feed the classi-
fier with 2n inputs (vector consisting of past
n-temperatures and past n-precipitation) (Ab-
hishek et al., 2012). The SOTAs in image and text
processing, i.e. Visual Transformers (Huang et al.,
2020) and BERT (Devlin et al., 2019), are based
on the transformer architecture. It extensively
uses the attention mechanism that is based on gen-
erating output sequences as a weighted sum of
processed sequence of inputs. So, a sliding win-
dow of historical input events allows to decide in
a stateless mode.
As stated in the introduction, an important ele-
ment of CEP is the speed of event processing. Al-
gorithms used in intelligent agents require a lot of
computation power Most of CEP are using mes-
saging and queuing systems to manage communi-
cation between agents so stateless agents could be
very easily scaled up and since the queuing sys-
tems works as a load balancer. However, it is not
possible in case of stateful agents. So in this case,
the performance is even more important aspect.
We propose to build intelligent agents called
EPA Event Processing Element as ontogenic
neural networks. The main goal is to find an ar-
chitecture that allows for the best generalization
quality. The network must have a certain margin
of freedom that lies in the adaptive parameters and
allows the model states to change smoothly. Well-
chosen margins of freedom together with model
complexity control criteria also allow to fight the
problem of local minima (Bonarini et al., 2003).
A model changing its architecture moves to other
adaptive parameter spaces with a different error
function, where the learning process continues
and new changes in the architecture are possible.

In this way, such a learning model can explore dif-
ferent spaces in search of a certain optimum.
The methods for checking the complexity of net-
work architectures can be divided into three
groups:
 magnifying these models include algorithms

that allow to add new neurons or new connec-
tions among neurons,

 reducing methods that remove unnecessary
neurons or connections among neurons or al-
gorithms that can join groups of neurons or
connections between neurons,

 cooperative systems groups of models, each
to solve the subtask of the problem and the
management system makes final decisions.

4. Case study

4.1. Topology tuning

Our intelligent agent EPA is based on reducing
ontogenic neural network. The fully connected
three-layer Multilayer Perceptron (MLP) is the
starting point (Pratihar, 2009). The final topology
is a result of neurons connection reducing based
on the actual and previous answers of the EPA. It
means we must store the history of the outputs and
to take them into account for the decision which
interconnection can be eliminated. The first pos-
sible approach for the reducing procedure is based
on significance factor:

si=E(without_neuron_i) E(with_neuron_i) (1)

which determines the difference between a net-
work error obtained without and with the partici-
pation of a neuron i. This method requires consid-
erable calculation costs to be determined for
each coefficient si of equation (1) an error for the
whole training set. Neurons with the less signifi-
cance factors can be removed.
The similar also passive (2) way of the signif-
icance coefficients determining has been used in
the FSM system (Feature Space Mapping)
(Adamczak et al., 1997; Duch & Diercksen, 1997;
Duch et al., 1995; Srivastava, 2008). Significance
coefficients are determined for each hidden layer
neuron after interrupting the learning process:

Qi = Ci (X)/|X| (2)

where: |X| number of training vectors, Ci (X)
number of correct answers given by neuron i from

Walkowiak Tomasz, Mazurkiewicz Jacek, Sugier J

198

input set X. In FSM type network each neuron
from hidden layer is responsible for the class. The
neuron with Qi close to zero is removed.
Methods that reduce the structure of a neural net-
work can often be considered as regularization
process. In the weight decay procedure (Hinton,
1987) for standard measure of error of model E0(f)

 (3)

the following factor is added (Weigend et al.,
1990, 1991):

 (4)

where: w0 is constant parameter the experi-
ment shows should be equal to one, if |wi| >>
w0 the factor goes to , if |wi| << w0 goes to zero.
The parameter can be tuned during learning pro-
cess:

 = + if En < D or En < En-1,
 = if En n-1 and En ,
 = 0.9 if En n-1 and En < D,

where: En the last epoch error, D final error for
the training process. Finally, the training algo-
rithm called Optimal Brain Damage (OBD) (Le
Cun et al., 1990) looks as follows.
1. Set the starting topology.
2. Make the training process using classic gradi-

ent method until the error is acceptable and the
changes are not important.

3. Calculate the significance factors taking into
account the regularization parameters.

4. Remove the weights fixed to the extremely low
values of significance factors. It means turn-off
the neurons from the hidden layer.

5. If the weights are reduced go to Step 2.
Of course the reduced number of neurons is ac-
ceptable if the network answer is still correct from
the functional point of view. If not it is obligatory
to come back to the previous version of the topol-
ogy. The OBD approach does not guarantee cor-
rect results of training procedure with the limited
number of neurons (Weigend et al., 1990, 1991).
It means the CEP construction have to provide the
availability to the feedback signals and to preserve
the earlier calculated results. In other words our
EPAs work not only on the current event but also
on a sequence of past events and the dynamic

structure of CEP is the key feature of the proposed
solution.

4.2. EPA description

We decided to create four independent types of in-
telligent agents to deal with four types of event
sensors:
 TS two-states sensors responsible for simple

events like on-off, open-closed,
 AM active movement sensors output: dis-

tance to moving object,
 TM temperature sensors output: the actual

temperature,
 BL brightness level output: actual bright-

ness measured using the proper units.
Of course, these parameters can be exchanged to
actual needs driven by the safety system features.
Potential sources of events considered: access
monitoring, area monitoring, mass messages, fire
risk, internal notifications, video monitoring,
communication channels, biometrics, access vio-
lation, temperature risk, gas hazard, acoustic
threat, biological and medical risks, flood risk,
open / close state, assembly / accumulation risk,
system operator signal, user defined. A wide spec-
trum of potential sources of events does not ex-
clude the use of a unified approach to the descrip-
tion of these events. We assume that the source
event generator will determine the record of the
given event in a kind of table. The number of de-
scription fields and their types are uniformly de-
fined. Such approach will allow for the initial ag-
gregation of events according to the reasons for
their occurrence, as well as subsequent binding
events in teaching vectors for intelligent infor-
mation processing systems that will be used to ac-
curately analyze the situation in the life of the sys-
tem described by data recorded from many sen-
sors.
The package of the following fields is stored in
unified structure:

Event_ID, Source_Name, Source_ID,
Source_GPS, Object_ID, System_ID,

Event_Date, Event_Occurence, Event_Duration,
Event_Value, Event_Importance,

Event_Probability, Event_Type, Event_Info.

For the set of experiments 1000 records for each
of four selected types of sensors were generated
covering the wide spectrum of possible input data.

Performance analysis of intelligent agents in complex event processing systems

199

The data were used to prepare the training 70%
of population and testing 30% of population
vectors of 10 inputs:

Event_ID, Source_ID, Object_ID, System_ID,
Event_Occurence, Event_Duration,

Event_Value, Event_Importance,
Event_Probability, Event_Type.

All introduced data were normalized reflected
from the original scale to [0,1] range. The training
vectors were equipped with the correct answer
gradient methods of neural network training needs
the teacher as a source of expected output. We
prepared four independent neural networks four
intelligent agents dedicated for each of four types
of sensors. The output of each intelligent sensor is
the value from 0 to 1 to describe the importance
level of sensor reaction. The fifth neural network
models the intelligent agent as final voting ele-
ment. Its input vector is created based on four in-

way the final output can be read as aggregated sig-
nal of alarm in the system. Of course, the final
agent training procedure needs the expert answer
if the actual input vector looks like the alarm situ-
ation. Such hierarchical structure of the single
processing element gives a chance to create the
flexible solution properly fixed to actual system
needs (Fig. 1).

 Event Intelligent hierarchical EPA Decision

Figure 1. Intelligent hierarchical EPA.

4.3. EPA topology and training

The Event Processing Agents cooperating with
the sensors are initially fully interconnected
Multilayer Perceptron. Next, we transform them
into ontogenic neural networks with flexible to-
pology. The size of the input layer is equal to the
size of the input vectors. It means we have 10 neu-
rons there ready to input the float digits represent-
ing the components described in the previous sub-
section. The output layer has only one neuron to

generate the answer of the net as the level of im-
portance of the data driven by the input sensor. Of
course, there is no problem to convert this fraction
value to two state using simple threshold mecha-
nism. The size of the single hidden layer is equal
to 20 neurons as a starting value, but during the
training procedure the number of active neurons
is reduced by the Optimal Brain Damage (OBD)
mechanism using regularization factors. This way
the minimum number of working neurons in hid-
den layer is only 4. The training procedure was
done for each EPA individually using the proper
set of input vectors dedicated for each sensor.
Each topology created as a result of OBD is
trained again. The number of epochs is limited by
the no change observation taking into account the
network error minimizing. The final results for
each EPA and data from each sensor are pre-
sented in Table 1.

Table 1. EPA correct answers [%] for different type
of sensors and limited number of neurons in hidden
layer as OBD mechanism result

Sensor Distance
type

Number of neurons in hidden layer
 OBD result

4 6 8 10 12 14 16 18 20
 1L 61 65 69 70 70 87 74 71 67

TS 2L 56 56 60 62 67 76 71 73 69
 L 47 51 53 57 62 65 61 57 55
 1L 62 68 68 73 73 77 75 72 70

AM 2L 55 58 58 63 66 72 72 70 68
 L 45 45 52 52 58 63 63 62 60
 1L 56 57 66 68 70 85 74 70 65

TM 2L 56 56 57 62 66 74 69 71 69
 L 43 45 50 55 61 67 61 55 53
 1L 60 65 67 75 71 78 72 72 71

BL 2L 52 55 59 65 66 76 71 70 68
 L 43 43 49 51 51 64 63 61 60

The initial values of all weights are generated as
random from [-1,1] range. The sigmoid transfer
function is applied to all neurons from hidden and
output layer. The training is done using Leven-
berg-Marquardt algorithm (Kung, 1993). Three
different kinds of experimental distance have been
used during error of model calculation (Kung,
1993).
The voting Event Processing Agents is initially
 also fully interconnected Multilayer Perceptron.

The size of the input layer is equal to the size of
the input vectors. It means we have 4 neurons

Walkowiak Tomasz, Mazurkiewicz Jacek, Sugier J

200

there ready to load the products of the EPA col-
laborating with the data taken from sensors. The
output layer has only one neuron to generate the
answer: one of two possible states: alarm / no
alarm. The size of the single hidden layer is equal
to 20 neurons as a starting value, but during the
training procedure the number of active neurons
is reduced by the Optimal Brain Damage (OBD)
mechanism using regularization factors. This way
the minimum number of working neurons in hid-
den layer is only 4.
The training procedure was done for using the set
of vectors created based on the components aggre-
gated as outputs from EPA cooperating with sen-
sors. The number of epochs is limited by the no
change observation taking into account the net-
work error minimizing. The final results the per-
centage of correct answers are presented in
Table 2. The initial values of all weights are gen-
erated as random from [-1,1] range.
The sigmoid transfer function is applied to all
neurons from hidden and output layer. The train-
ing is done using Levenberg-Marquardt algo-
rithm. Three different kinds of experimental dis-
tance have been used during error of model calcu-
lation (4).

Table 2. Voting EPA correct answers [%] for limited
number of neurons in hidden layer as OBD
mechanism result

Distance
type

Number of neurons in hidden layer
 OBD result

4 6 8 10 12 14 16 18 20
1L 67 69 72 75 77 82 88 85 81
2L 58 64 68 70 73 74 75 79 76

L 53 55 58 62 65 71 73 70 70

4.4. Analysis and sensitivity discussion

The experimental results pointed in Table 1 show
that intelligent hierarchical EPA is able to provide
correct recognition of the importance level based
on data from different types of sensors. Both bi-
level and scaled continuous outputs from the sen-
sors can be useful source of data for the proper
decision. We find the answer of EPA cooperating
with sensor as correct if it equals to required out-
put within [-0.1, +0.1] range. The extremely re-
duced number of neurons according to OBD
mechanism causes insufficient incorrect from
the functional point of view answer of EPA. It
seems natural, but on the other hand the onto-

genic approach to EPA construction with on-
line hidden layer tuning looks very promising.
We started with twenty neurons located in this
layer, but this value looking good as a-priori as-
sumption is not optimal. The best size is 14 neu-
rons for all types of the sensors. Of course this op-
timal number of neurons can be different if we use
other sets of input data or we redefine the input
vectors. The ontogenic topology is caused by the
data used for training procedure. The correct EPA
answers available for all tested types of sensors is
a kind of proof that the set of 1000 training vectors
sounds sensible to create the required level of
recognition skills of single EPA. By modelling the
training vectors sets we can tune the level of EPA
reaction for input as well as we can store in the
EPA deeper and more or less detailed history of
the system life. We know how important is the
correct required output during the train-
ing process. This output should be based on the
expert knowledge to finish the weights setting at
the necessary level of details. The EPA outputs for
all types of sensors look promising, but better re-
sults we find for TS two-states sensors respon-
sible for simple events and TM temperature sen-
sors. Maybe these types of data are more conven-
ient for neural modeling, or the expert knowledge
used during training is better, or other types of
sensors need more epochs or more data to estab-
lish final values of weights. Table 1 also tells us
that for all types of sensors the most classic ap-
proach to distance measure L1 is the best for the
task we discuss. It means the easiest implementa-
tion in the practical future of the system. The vot-
ing EPA results Table 2 looks also very prom-
ising. The final answer of the hierarchical EPA
structure is the best for the topology with 16 neu-
rons in the hidden layer. Again the OBD mecha-
nism allows to reduce the size of this layer to the
most suitable size. And the aggregation of the pre-

using the same L1 type of distance during training
procedure. The hierarchical construction of the in-
telligent EPA allows to create more sophisticated
cascades of EPAs collaborating with sensors with
the final decision block. This way we can decide
about the components of the voting EPA answer,
we can model the influence of the events for the
next step of the safety system reaction.
During the last part of the experiment, we try to
check the EPA sensitivity for the changes of the
input vectors. Each unified input vector collects

Performance analysis of intelligent agents in complex event processing systems

201

the set of parameters describing the single sen-

constant or almost constant.

Table 3. EPA sensitivity [%] for different type of
sensors and limited number of neurons in hidden
layer as OBD mechanism result

Sensor Distance
type

Number of neurons in hidden layer
 OBD result

4 6 8 10 12 14 16 18 20
 1L 10 10 8 7 7 6 6 4 3

AM 2L 13 13 11 10 9 7 6 5 4
 L 15 15 12 10 10 9 7 6 5
 1L 8 8 7 7 6 5 5 3 2

TM 2L 10 10 11 8 9 6 6 5 4
 L 12 14 12 10 10 8 7 6 5
 1L 10 10 8 7 7 6 6 4 3

BL 2L 13 13 11 10 9 7 6 5 4
 L 15 15 12 10 10 9 7 6 5

The main changes are observable in these compo-
nents which reflect the environmental feature
tested by the sensor. This way we try to find if the
EPA answer is really provoked by this leading
value from the input vector. Result are presented
in Table 3. We can easily notice that greater num-
ber of neurons provides the better sensitivity for
input data. The net with the greater number of
neurons in hidden layer can analyze the input vec-
tor in more detailed way. For TM sensors we find
better sensitivity than for AM and BL sensors.
The previous sentence is kind of analogy to the
first part of the experiments, and we are not sur-
prised about it. There is no sense to check the sen-
sitivity parameter for TS sensors because inputs
are binary. The L1 distance type is the most suita-
ble.
Results of the case study discussion show the sen-
sible scale of the topology of EPA tunning taking
into account the correct answers and required
level of output sensitivity. These conclusions have
the significant influence for the practical imple-
mentation of EPA structure using GPU as
complete CEP system.

5. CEP with intelligent agents architecture

We propose a micro-service architecture (Wolff,
2016) for event processing with intelligent agents.
The system consists of: NATS Streaming (Nats,
2022) for inter-component communication, Sid-
dhi (Suhothayan et al., 2011) as CEP engine and
intelligent agents itself. NATS Streaming due to

its high performance and support from Siddhi acts
as a communication middleware.

Figure 2. Siddhi agent configuration
for communication with intelligent agent by NATS.

Intelligent agents are deployed as containers and
act as NATS subscribers. They actively listen to
NATS topics and receive messages. After pro-
cessing the message using built-in ML algorithms,
they send messages back to the Siddhi. We have
created a simple Python library to facilitate the
creation of intelligent agents. The programming
interface consists of two methods: initialization,
which is mainly used to load the model, and pro-
cessing which is called when a message arrives
and returns the result message.
The NATS script used to communicate with the
intelligent agent is shown in Figure 2.
Intelligent agents are containerized using Docker
(Merkel, 2014). This not only allows a basic ver-
sion of the system to be quickly deployed on al-
most any computer (using Docker Compose), e.g.,
for testing and development, but also for auto-
matic and continuous deployment using Kuber-
netes (Kubernetes, 2022). As mentioned in Sec-
tion 2, Kubernetes provides scalability and high
reliability, and enables easy management of a
highly distributed event processing system. We
maintain two versions of the containers, one for
implementation on the CPU and one for imple-
mentation on the GPU, if needed.

6. Implementation of deep intelligent agents

Deep learning architectures (such as LSTM and
transformers) require a lot of computation power
even in the inference phase. Therefore, the most
typical scenario is to use the GPU to compute the
network results. However, the GPU is a limited
resource, and it is worth investigating how a deep

Walkowiak Tomasz, Mazurkiewicz Jacek, Sugier J

202

network performs on the CPU alone. To analyze
it and to select the optimal number of CPUs and
the batch size, we conducted a set of experiments.
We tested the PyTorch implementation of the
BERT network with Hugging Face (Wolf et al.,
2020) and the ONNX Runtime (Microsoft, 2022).
The last uses an open-source machine-independ-
ent format and is widely used for exchanging neu-
ral network models (Bai et al., 2022). Both solu-
tions allow the model to run on GPU or CPU. We
trained the SBERT model (Reimers, Gurevych,
2019) and tested the longest sequences (512 to-
kens). In the tests, we used AMD Ryzen 9 3950X
and NVIDIA GeForce RTX 3090 graphics cards.
The results are shown in Table 4. All tests were
repeated 100 times and the results represent the
average value.

Table 4. BERT inference time per task in ms for
different deployments. In case of a usage of batches
the reported time is a time of processing a batch
divided by the size of a batch

Batch size
PyTorch ONNX

1 4 8 1 4 8
GPU 9.6 7.4 6.5 8.1 7.2 6.4

1xCPU 3103 3116 3071 968 1006 1103
2xCPU 1597 1611 1640 527 521 532
4xCPU 848 858 858 298 293 290
8xCPU 536 502 498 202 187 184

16xCPU 415 360 341 177 158 152

The results show that the ONNX implementation
outperforms PyTorch in terms of inference time
for both CPU and GPU cases. The tests were per-
formed for different batch sizes. The results show
that using batches speeds up the average inference
time, but the efficiency of using batches is low.
Therefore, the batch size must be carefully se-
lected, especially for long processing times, as in
the case of CPU-based implementations. Moreo-
ver, the use of batches for CPU is justified only
when we have more CPU cores than the batch
size, in other case there is no average speed-up.
Even in such cases, the speed increase by using
batches is not very large. For example, the differ-
ences between batch sizes of 4 and 8 (for more
than 8 CPUs) are less than 2% and 4%, respec-
tively. Thus, the use of batches should be limited
to a small value and considered for reasons other
than speeding up model inference; for example,
event batches could speed up communication be-

tween the queueing system and the agent. The per-
formance of multiprocessor inference decreases
very quickly as a function of the number of cores
used (see Table 5). Therefore, the only reason to
use more than one CPU core for inference is to
reduce the processing time per event. The
PyTorch implementation gives better perfor-
mance values, but as shown in Table 6, the ONNX
implementations are 2-3 times faster on CPU than
PyTorch.

Table 5. Multi CPU implementation efficiency.
The ratio of the time required by one processor to the
time required by n-processors divided by n (for batch
of size 1)

Number of CPU 2 4 8 16
ONNX 0.918 0.812 0.599 0.341

PyTorch 0.971 0.914 0.772 0.467

Table 6. The ratio of ONNX processing time to
PyTorch processing time. The 5th column of Table 4
divided by the 2nd column

GPU CPU
1 2 4 8 16

1.18 3.2 3.0 2.84 2.65 2.34

Another important aspect of the deep agent imple-
mentation is the memory consumption and model
loading time. The results for the GPU implemen-
tation are shown in Table 7 and for the CPU in
Table 8. Again, it can be seen that the ONNX im-
plementation is better than the PyTorch one. Both
implementations allow the model to be removed
from memory, but not to free all memory. Obvi-
ously, killing the process will free all memory, but
given the architecture proposed in Section 5, this
is not the case under study, since running a new
pod in Kubernetes with the image and model
downloading may take more than 6s. For the
GPU, the time to reload the model after its release
is approx. 3 times shorter than the first load. For
the CPU, this phenomenon does not occur.

Table 7. Usage of memory and time of loading
model in case of GPU implementation

Time / Memory PyTorch ONNX
Time of model loading 3.48 s 1.26 s
Time model reloading 0.88 s 0.46 s

Memory usage 2.6 GB 1.7 GB
Memory after freeing model 2 GB 0.6 GB

Performance analysis of intelligent agents in complex event processing systems

203

Table 8. Usage of memory and time of loading
model in case of CPU (results for 8 cores and batch
size 4)

Time / Memory PyTorch ONNX
Time of model loading 0.8-0.9 s 0.5 s

Memory usage 1.5 GB 1.1GB
Memory after freeing model 0.9 GB 0.4 GB

The performed analysis shows that deep agents
should be implemented in ONNX runtime. In case
of the lack of GPU the CPU implementation is
possible but we have to use several CPUs, its
number could be calculated looking at Table 4 re-
sults. Knowing the frequency of input events, we
can estimate the maximum acceptable processing
time for the agent and select the lowest number of
CPU that allows processing time within limits.

7. Conclusion

The chapter discusses performance aspects of in-
telligent agents in Complex Event Processing
(CEP) systems. Actual methods of implementing
and deployment of CEP systems are presented.
The intelligent agent problem and the idea of cre-
ating a CEP system with intelligent agents are de-
fined. A case study with a set of intelligent agents
designed to handle real events caused by environ-
mental data monitoring is pointed out. The analy-
sis performed shows that deep agents should be
implemented in the ONNX runtime. In the ab-
sence of GPU, a CPU-based implementation is
possible, but we need to use several CPUs. The
frequency of input events is the main feature to
estimate the maximum acceptable processing time
of the agent and to choose the least number of
CPUs to process the data in a given time.

Acknowledgment

This work presented results of the Smart Growth
Operational Programme 2014-2020 grant
No. POIR.01.01.01-00-0235/17 supported by the
Polish National Centre for Research and Develop-
ment (NCBR) as a part of the European Regional
Development Fund (ERDF).

References

Abhishek, K., Singh, M.P., Ghosh, S. & Anand,
A. 2012. Weather forecasting model using arti-
ficial neural network. Procedia Technology 4,
311 318.

Adamczak, R., Duch, W. & Jankowski, N. 1997.
New developments in the feature space mapping
model. Third Conference on Neural Networks
and Their Applications. Kule, Poland, 65 70.

Bai, J., Lu, F., Zhang, K. et al. 2022. ONNX: Open
Neural Network Exchange. GitHub
https://github.com/onnx/onnxi. (accessed 01
June 2022).

Bonarini, A., Masulli, F. & Pasi, G. 2003. Ad-
vances in Soft Computing, Soft Computing Ap-
plications. Springer.

Devlin, J., Chang, M-W., Lee, K. & Toutanova, K.
2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.
https://doi.org/10.48550/arXiv.1810.04805.

Duch, W. & Diercksen, G.H.F. 1994. Feature
space mapping as a universal adaptive system.
Computer Physics Communications 87, 341
371.

Duch, W., Jankowski, N., Naud, A. & Adamczak,
R. 1995. Feature space mapping: a neurofuzzy
network for system identification. Proceedings
of the European Symposium on Artificial Neural
Networks. Helsinki, 221 224.

Greff, K., Srivastava, R.K., Koutnik, J.,
Steunebrink, B.R. & Schmidhuber, J. 2017.
LSTM: A search space odyssey. IEEE Transac-
tions on Neural Networks and Learning Systems
28(10), 2222 2232.

Hastie, T., Friedman, J. & Tisbshirani, R. 2018.
The Elements of Statistical Learning: Data Min-
ing, Inference and Prediction. New York,
Springer.

Hinton, G.E. 1987. Learning translation invariant
recognition in massively parallel networks. Pro-
ceedings PARLE Conference on Parallel Archi-
tectures and Languages Europe. Berlin.
Springer-Verlag, 1 13.

Huang, Z., Xu P., Liang, D., Mishra, A. & Xiang, B.
2020. TRANS-BLSTM: Transformer with Bidi-
rectional LSTM for Language Understanding.
https://doi.org/10.48550/arXiv.2003.07000.

Kubernetes. 2022. https://kubernetes.io/ (ac-
cessed 01 June 2022).

Kung, S.Y. 1993. Digital Neural Networks. Pren-
tice-Hall.

Le Cun, Y., Denker, J. & Solla, S. 1990. Optimal
Brain Damage. Advances in Neural Information
Processing Systems 2. Morgan Kauffman. San
Mateo CA.

Limnios, N. & Oprisan, G. 2001. Semi-Markov
Processes and Reliability. Birkhauser, Boston.

Walkowiak Tomasz, Mazurkiewicz Jacek, Sugier J

204

Merkel, D. 2014. Docker: lightweight Linux con-
tainers for consistent development and deploy-
ment. Linux Journal 2014(239), 2.

Microsoft. 2022. ONNX Runtime, https://github.
com/microsoft/onnxruntime (accessed 01 June
2022).

Nats. 2022. NATS.io; Cloud Native, Open
Source, High-performance Messaging,
https://nats.io/, https://nats.io/documentation/
(accessed 01 June 2022).

Peter, M.E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, Ch., Lee, K. & Zettlemoyer, L. 2018.
Deep contextualized word representations. Pro-
ceedings of the 2018 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies 1, 2227 2237, New Orleans, Louisi-
ana. Association for Computational Linguistics.

Reimers, N. & Gurevych, I. 2019. Sentence-
BERT: Sentence Embeddings using Siamese
BERT-Networks.3973 3983. 10.18653/v1/D19-
1410.

Srivastava, A.K. 2008. Soft Computing. Narosa
PH.

 & Helt, K. 2019. Performance evalu-
ation of event-driven software applied in moni-
toring systems. I. Kabashkin, I. Yatskiv
(Jackiva), O. Prentkovskis (Eds.). Reliability
and Statistics in Transportation and Communi-
cation. RelStat 2018. Lecture Notes in Networks
and Systems 68. Springer, Cham, 311 319.

Suhothayan, S., Gajasinghe, K., Narangoda, I.L.,
Chaturanga, S., Perera, S. & Nanayakkara, V.
2011. Siddhi: a second look at complex event
processing architectures. Proceedings of the
2011 ACM workshop on Gateway computing
environments (GCE'11). Association for
Computing Machinery, New York, NY, USA,
43 50.

Weigend, A.S., Rumelhart, D.E. & Huberman,
B.A. 1990. Backpropagation, weight elimina-
tion and time series prediction. Proceedings of
the 1990 Connectionist Models Summer School.
Morgan Kaufmann, 65 80.

Weigend, A.S., Rumelhart, D.E. & Huberman, B.
A. 1991. Generalization by weight elimination
with application to forecasting. Advances in
Neural Information Processing Systems 3. San
Mateo CA. Morgan Kaufmann, 875 882.

Wolf, T., Debut, L. et al. 2020. Transformers:
state-of-the-art natural language processing.

Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing:
System Demonstrations, 38 45, Online. Associ-
ation for Computational Linguistics.

Wolff, E. 2016. Microservices: Flexible Software
Architectures. Addison-Wesley.

