Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 3 | 504--518
Tytuł artykułu

A hybrid approach for the delineation of brain lesion from CT images

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brain lesion segmentation from radiological images is the most important task in accurate diagnosis of patients. This paper presents a hybrid approach for the segmentation of brain lesion from computed tomography (CT) images based on the combination of fuzzy clustering using hyper tangent function as the robust kernel and distance regularized level set evolution (DRLSE) function as the edge based active contour method. Kernel based fuzzy clustering method divides the image into different regions. These regions can be used to find region of interest by using DRLSE algorithm to generate the optimal region boundary. The proposed method results in smooth boundary of the required regions with high accuracy of segmentation. In this paper, results are compared with standard fuzzy c-means (FCM) clustering, spatial FCM, robust kernel based fuzzy clustering (RFCM) and DRLSE algorithms. The performance of the proposed method is evaluated on CT scan images of hemorrhagic lesion, which shows that our method can segment brain lesion more accurately than the other conventional methods.
Wydawca

Rocznik
Strony
504--518
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, India, anga3.dcs2015@iitr.ac.in
autor
  • Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, India, balarfma@iitr.ac.in
  • Department of Radiology, Himalayan Institute of Medical Sciences, Jolly Grant, Dehradun, India, sraghuvanshi1@gmail.com
Bibliografia
  • [1] Gonzalez RC, Woods RE. Digital image processing. 3rd ed. India: Pearson; 2014.
  • [2] Vogt FM, Antoch G, Veit P, Freudenberg LS, Blechschmid N, Diersch O, et al. Morphologic and functional changes in nontumorous liver tissue after radiofrequency ablation in an in vivo model: comparison of 18F-FDG PET/CT, MRI, ultrasound, and CT. J Nucl Med 2007;48(11):1836–44.
  • [3] Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 1996;93(4):1591–5.
  • [4] Li C, Xu C, Gui C, Fox MD. Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 2010;19(12):3243–54.
  • [5] Li C, Xu C, Gui C, Fox MD. Level set evolution without reinitialization: a new variational formulation. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1. 2005. pp. 430–6.
  • [6] Suri J. Leaking prevention in fast level sets using fuzzy models: An application in mr brain. Proceedings 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine. IEEE; 2000. p. 220–5.
  • [7] Bhadauria HS, Dewal ML. Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain ct imaging. SIViP 2014;8(2):357–64.
  • [8] Jiang XL, Wang Q, He B, Chen SJ, Li BL. Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 2016;207:22–35.
  • [9] Zhuang AH, Valentino DJ, Toga AW. Skull-stripping magnetic resonance brain images using a model-based level set. NeuroImage 2006;32(1):79–92.
  • [10] Fredo AJ, Kavitha G, Ramakrishnan S. Automated segmentation and analysis of corpus callosum in autistic mr brain images using fuzzy-c-means-based level set method. J Med Biol Eng 2015;35(3):331–7.
  • [11] Dubey YK, Mushrif MM, Mitra K. Segmentation of brain MR images using rough set based intuitionistic fuzzy clustering. Biocybern Biomed Eng 2016;36(2):413–26.
  • [12] Shahangian B, Pourghassem H. Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure. Biocybern Biomed Eng 2016;36(2):217–32.
  • [13] Koundal D, Gupta S, Singh S. Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Appl Soft Comput 2016;40:86–97.
  • [14] Kannan SR, Ramathilagam S, Devi R, Sathya A. Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 2011;38(4):4382–9.
  • [15] Pedrycz W. Fuzzy sets in pattern recognition: methodology and methods. Pattern Recognit 1990;23(1–2): 121–46.
  • [16] Dunn JC. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 1973;3(3):32–57. http://dx.doi.org/10.1080/01969727308546046.
  • [17] Bezdek JC, Ehrlich R, Full W. FCM: the fuzzy c-means clustering algorithm. Comput Geosci 1984;10(2-3): 191–203.
  • [18] Tolias YA, Panas SM. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans Systems Man Cybernet A 1998;28(3):359–69.
  • [19] Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002;21(3):193–9.
  • [20] Zhang DQ, Chen SC. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif Intell Med 2004;32(1):37–50.
  • [21] Chen S, Zhang D. Robust image segmentation using fcm with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B: Cybern 2004;34(4):1907–16.
  • 22] Elazab A, Wang C, Jia F, Wu J, Li G, Hu Q. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy-means clustering. Comput Math Methods Med 2015.
  • [23] Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ. Fuzzy cmeans clustering with spatial information for image segmentation. Comput Med Imaging Graph 2006;30(1):9–15.
  • [24] Wang J, Kong J, Lu Y, Qi M, Zhang B. A modified fcm algorithm for mri brain image segmentation using both local and non-local spatial constraints. Comput Med Imaging Graph 2008;32(8):685–98.
  • [25] Bandyopadhyay S, Maulik U, Mukhopadhyay A. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens 2007;45(5):1506–11.
  • [26] Saha S, Alok AK, Ekbal A. Brain image segmentation using semi-supervised clustering. Expert Syst Appl 2016;52:50–63.
  • [27] Alok AK, Saha S, Ekbal A. A new semi-supervised clustering technique using multi-objective optimization. Appl Intell 2015;43(3):633–61.
  • [28] Alok AK, Saha S, Ekbal A. Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery. Soft Comput 2016;20(12):4733–51.
  • [29] Prakash J, Singh PK. Gravitational search algorithm and kmeans for simultaneous feature selection and data clustering: a multi-objective approach. Soft Comput 2017;1–18.
  • [30] Chen L, Chen CLP, Lu M. A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Trans Syst Man Cybern B: Cybern 2011;41(5):1263–74.
  • [31] Kannan SR, Devi R, Ramathilagam S, Hong TP. Effective fuzzy possibilistic c-means: an analyzing cancer medical database. Soft Comput 2017;21(11):2835–45.
  • [32] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 1988;79(1):12–49.
  • [33] Adalsteinsson D, Sethian JA. A fast level set method for propagating interfaces. J Comput Phys 1995;118(2):269–77.
  • [34] Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS ONE 2015;10(12):e0145118.
  • [35] Dubuisson MP, Jain AK. A modified hausdorff distance for object matching. Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference A: Computer Vision & Image Processing, vol. 1. IEEE; 1994. p. 566–8.
  • [36] Case courtesy of Dr. Prashant Mudgal, 2017. https://radiopaedia.org/cases/26131 [accessed 15.03.17].
  • [37] Case courtesy of Dr. Rajalakshmi Ramesh, 2017. https://radiopaedia.org/cases/34306 [accessed 15.03.17].
  • [38] Engineering statistics handbook. What are the outliers in the data, 2017. http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm [accessed 5.04.17].
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-99a5a464-5ba7-4385-a6ec-a774f5e437a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.