Warianty tytułu
Języki publikacji
Abstrakty
This study identifies convective and kinematic parameters that positively influence elevated values of cloud-to-ground lightning flashes (CGs) in Poland. The analysis used data from the PERUN lightning detection and location system from IMGW-PIB and reanalyses of the ERA5 model from ECMWF for the period 2002-2020. In addition, a spatial-temporal distribution analysis was carried out for the period 1940-2022, covering the key parameters necessary for the appearance of convection. Results showed that thunderstorms most often occur in the summer, but also that there are increasingly favorable conditions for the appearance of organized multicellular systems in the spring. CG flashes most often form in a most-unstable convective available potential energy (MU CAPE) environment of about 1300 J/kg along with vertical wind shear (0-6 km AGL bulk wind shear) of 13-14 m/s. Using the WMAXSHEAR parameter, it was possible to conclude that overlapping CAPE and DLS values of about 500 m2/s2 imply increased electrical activity. At the same time, a high correlation with the Hail Size Index (HSI) parameter implies a positive relationship between the occurrence of hailstorms and an increased number of CGs generated in the case of supercells. The research also found a gradual increase in air temperature, MU CAPE, MU Mixing Ratio and the MU WMAXSHEAR parameter for the area under study.
Słowa kluczowe
Rocznik
Tom
Strony
83--103
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
autor
- Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Toruń, Poland, sulik@umk.pl
- Skywarn Poland, Warsaw, Poland
autor
- Department of Meteorology and Climatology, Adam Mickiewicz University, Poznań, Poland
Bibliografia
- Allen J.T., 2018, Climate change and severe thunderstorms, Oxford Research Encyclopedia of Climate Science, Oxford University Press.
- Allen J.T., Tippett M.K., Sobel A.H., 2015, An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment, Journal of Advanced Modeling Earth Systems, 7 (1), 226-243, DOI: 10.1002/2014MS000397.
- Betz H.D., Schumann U., Laroche P. (eds.), 2009, Principles, Instruments and Applications: Review of Modern Lightning Research, Springer, 641 pp., DOI: 10.1007/978-1-4020-9079-0.
- Biron D., 2009, LAMPINET - Lightning detection in Italy, [in:] Principles, Instruments and Applications: Review of Modern Lightning Research, H.D. Betz, U. Schumann, P. Laroche (eds.), Springer, 141-159.
- Bodzak P., 2006, Detekcja i lokalizacja wyładowań atmosferycznych, Instytut Meteorologii i Gospodarki Wodnej, 135 pp.
- Brooks H.E., Lee J.W., Craven J.P., 2003, The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data, Atmospheric Research, 67-68, 73-94, DOI: 10.1016/S0169-8095(03)00045-0.
- Byers H.R., Braham R.R., 1949, Glossary of Meteorology, American Meteorology Society, The Thunderstorm. U.S. Government Printing Office, p. 287.
- Byrne P., O’Gorman P.A., 2016, Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations, Journal of Climate, 29 (24), 9045-9061, DOI: 10.1175/JCLI-D-16-0351.1.
- Celiński-Mysław D., Palarz A., Taszarek M., 2020, Climatology and atmospheric conditions associated with cool season bow echo storms in Poland, Atmospheric Research, 240, DOI: 10.1016/j.atmosres.2020.104944.
- Changnon S.A., 1988, Climatography of thunder events in the conterminous United States. Part I: Temporal aspects, Journal of Climate, 1 (4), 389-398.
- Coffer B.E., Parker M.D., 2015, Impacts of increasing low-level shear on supercells during the early evening transition, Monthly Weather Review, 143 (5), 1945-1969, DOI: 10.1175/MWR-D-14-00328.1.
- Coumou D., Lehmann J., Beckmann J., 2015, The weakening summer circulation in the Northern Hemisphere mid-latitudes, Science, 348 (6232), 324-327, DOI: 10.1126/science.126176.
- Cummins K.L., Murphy M.J., Bardo E.A., Hiscox W.L., Pyle R.B., Pifer A.E., 1998, A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network, Journal of Geophysical Research. Atmospheres, 103 (D8), 9035-9044, DOI: 10.1029/98JD00153.
- Czernecki B., Taszarek M., Marosz M., Półrolniczak M., Kolendowicz L., Wyszogrodzki A., Szturc J., 2019, Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5, Atmospheric Research, 227, 249-262, DOI: 10.1016/j.atmosres.2019.05.010.
- Diendorfer G., 2008, Some comments on the achievable accuracy of local ground flash density values, Proceedings of 29th International Conference on Lightning Protection, Uppsala, Sweden, ICLP Centre.
- Doswell C.A., 2001, Severe convective storms - An overview, [in:] Severe Convective Storms, C.A. Doswell (ed.), Meteorology Monographs, American Meteorology Society, 50, 1-26.
- Doswell C.A., Rasmussen E.N., 1994, The effect of neglecting the virtual temperature correction on CAPE calculations, Weather Forecasting, 9 (4), 625-629, DOI: 10.1175/1520-0434(1994)0092.0.CO;2.
- Dotzek N., Groenemeijer P., Feuerstein B., Holzer A.M., 2009, Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD, Atmospheric Research, 93 (1-3), 575-586, DOI: 10.1016/j.atmosres.2008.10.020.
- Enno S.E., 2011, A climatology of cloud-to-ground lightning over Estonia, 2005-2009, Atmospheric Research, 100 (4), 310-317, DOI: 10.1016/j.atmosres.2010.08.024.
- Farr T.G., and Coauthors, 2007, The Shuttle Radar Topography Mission, Reviews of Geophysics, 45, RG2004, DOI: 10.1029/2005RG000183.
- Farnell C., Rigo T., 2020, The lightning jump algorithm for nowcasting convective rainfall in Catalonia, Atmosphere, 11 (4), DOI: 10.3390/atmos11040397.
- Feudale L., Manzato A., Micheletti S., 2013, A cloud-to-ground lightning climatology for north-eastern Italy, Advances in Science and Research, 10 (1), 77-84, DOI: 10.5194/asr-10-77-2013.
- Gieysztor A., 2006, Mitologia Słowian, Wydawnictwo Uniwersytetu Warszawskiego, 407 pp.
- Groenemeijer P., Tomáš P., Alois M.H., Antonescu B., Riemann-Campe K., Schultz D.M., Kühne T., Feuerstein B., Brooks H.E., Doswell C.A. III, Koppert H.-J., Sausen R., 2017, Severe convective storms in Europe: Ten years of research and education at the European Severe Storms Laboratory, Bulletin of the American Meteorological Society, 98 (12), 2641-2651, DOI: 10.1175/BAMSD-16-0067.1.
- Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J.-N., 2020, ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
- IPCC, 2023, Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report, available online at https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (data access 30.07.2024).
- Kane J.R., 1993, Lightning-rainfall relationships in an isolated thunderstorm over the mid-Atlantic states, National Weather Digest, 18 (3), 2-14.
- Kejna M., Rudzki M., 2021, Spatial diversity of air temperature changes in Poland in 1961-2018, Theoretical and Applied Climatology, 143 (3-4), 1361-1379, DOI: 10.1007/s00704-020-03487-8.
- Koehler T.L., 2020, Cloud-to-ground lightning flash density and thunderstorm day distributions over the contiguous United States derived from NLDN measurements: 1993-2018, Monthly Weather Review, 148 (1), 313-332, DOI: 10.1175/MWR-D19-0211.1.
- Kolendowicz L., 2012, Synoptic patterns associated with thunderstorms in Poland, Meteorologische Zeitschrift, 21 (2), 145-156, DOI: 10.1127/0941-2948/2012/0272.
- Konarski J., Gajda W., Dziewit Z., Barański P., 2008, Severe winter thunderstorm in Poland, case study, [in:] 20th International Lightning Detection Conference; 2nd International Lightning Meteorology Conference, 21-25 April, Tucson, USA, 8 pp.
- Kotroni V., Lagouvardos K., 2016, Lightning in the Mediterranean and its relation with sea-surface temperature, Environmental Research Letters, 11 (3), DOI: 10.1088/1748-9326/11/3/034006.
- Lang T.J., Miller L.Y., Weisman M., Rutledge S.A., Barker III L.J., Bringi V.N., Chandrasekar V., Detwiler A., Doesken N., Helsdon J., Knight C., Krehbiel P., Lyons W.A., MacGorman D., Rasmussen E., Rison W., Rust W.D., Thomas R.J., 2004, The severe thunderstorm electrification and precipitation study, Bulletin of the American Meteorological Society, 85 (8), 1107-1126, DOI: 10.1175/BAMS-85-8-1107.
- Lin Y., Kumjian M.R., 2021, Influences of CAPE on hail production in simulated supercell storms, Journal of Atmospheric Sciences, 79 (1), 179-204, DOI: 10.1175/JAS-D-21-0054.1.
- Mäkelä A., Rossi P., Schulz D.M., 2011, The daily cloud-to-ground lightning flash density in the contiguous United States and Finland, Monthly Weather Review, 139 (5), 1323-1337, DOI: 10.1175/2010MWR3517.1.
- Novák P., Kyznarová H., 2011, Climatology of lightning in the Czech Republic, Atmospheric Research, 100 (4), 318-333, DOI: 10.1016/j.atmosres.2010.08.022.
- Pena-Ortiz C., Gallego D., Ribera P., Ordonez P., Alvarez-Castro M.D.C., 2013, Observed trends in the global jet stream characteristics during the second half of the 20th century, Journal of Geophysical Research. Atmosphere, 118 (7), 2702-2713, DOI: 10.1002/jgrd.50305.
- Pilguj N., Taszarek M., Kryza M., Brooks H., 2022, Reconstruction of violent tornado environments in Europe: High-resolution dynamical downscaling of ERA5, Geophysical Research Letters, 49 (11), DOI: 10.1029/2022GL098242.
- Pohjola H., Mäkelä A., 2013, The comparison of GLD360 and EUCLID lightning location systems in Europe, Atmospheric Research, 123, 117-128, DOI: 10.1016/j.atmosres.2012.10.019.
- Poręba S., Taszarek M., Ustrnul Z., 2022, Diurnal and seasonal variability of ERA5 convective parameters in relation to lightning flash rates in Poland, Weather and Forecasting, 37 (8), 1447-1470, DOI: 10.1175/WAF-D-21-0099.1.
- Pucik T., Groenemeijer P., Ryva D., Kolar M., 2015, Proximity soundings of severe and nonsevere thunderstorms in Central Europe, Monthly Weather Review, 143 (12), 4805-4821, DOI: 10.1175/MWR-D-15-0104.1.
- R Core Team, 2014, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available online at https://www.r-project.org/ (data access 30.07.2024).
- Riemann-Campe K., Fraedrich K., Lunkeit F., 2009, Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 re-analysis, Atmospheric Research, 93 (1-3), 534-545, DOI: 10.1016/j.atmosres.2008.09.037.
- Santos J.A., Reis M.A., Sousa J., Leite S.M., Correia S., Janeira M., Fragoso M., 2012, Cloud-to-ground lightning in Portugal: Patterns and dynamical forcing, Natural Hazards Earth System Science, 12 (3), 639-649, DOI: 10.5194/nhess-12-639-2012.
- Schulz W., Cummins K., Diendorfer G., Dorninger M., 2005, Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system, Journal Geophysical Research, 110 (D9), DOI: 10.1029/2004JD005332.
- Soriano L.R., De Pablo F., Tomas C., 2005, Ten-year study of cloud-to ground lightning activity in the Iberian Peninsula, Journal of Atmospheric and Solar-Terrestrial Physics, 67 (16), 1632-1639, DOI: 10.1016/j.jastp.2005.08.019.
- Soula S., Seity Y., Feral L., Sauvageot H., 2004, Cloud-to-ground lightning activity in hail-bearing storms, Journal of Geophysical Research. Atmospheres, 109 (D2), DOI: 10.1029/2003JD003669.
- Sulik S., 2021, Formation factors of the most electrically active thunderstorm days over Poland (2002-2020), Weather and Climate Extremes, 34, DOI: 10.1016/j.wace.2021.100386.
- Sulik S., 2022, A cloud-to-ground lightning density due to progressing climate change in Poland, Environmental Challenges, 9, DOI: 10.1016/j.envc.2022.100597.
- Sulik S., Kejna M., 2022, Spatial diversity of cloud-to-ground lightning flashes in the Kujawsko-Pomorskie Voivodeship (Poland), 2002-2019, Geographia Polonica, 95 (1), 5-23, DOI: 10.7163/GPol.0224.
- Sulik S., Kejna M., 2023, Comparison of thunderstorm days in Poland based on SYNOP reports and PERUN Lightning Detection System, Miscellanea Geographica, 27 (3), 134-146, DOI: 10.2478/mgrsd-2023-0019.
- Taszarek M., Allen J., Púčik T., Groenemeijer P., Czernecki B., Kolendowicz L., Lagouvardos K., Kotroni V., Schulz W., 2019a, A climatology of thunderstorms across Europe from a synthesis of multiple data sources, Journal of Climate, 32, 1813-1837, DOI: 10.1175/JCLI-D-18-0372.1.
- Taszarek M., Brooks H.E., Czernecki B., 2017, Sounding-Derived Parameters Associated with Convective Hazards in Europe, Monthly Weather Review, 145, 1511-1528, DOI: 10.1175/MWR-D-16-0384.1.
- Taszarek M., Czernecki B., Kozioł A., 2015, A cloud-to-ground lightning climatology for Poland, Monthly Weather Review, 143 (11), 4285-4304, DOI: 10.1175/MWR-D-15-0206.1.
- Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Piasecki K., Pajurek Ł., Półrolniczak M., 2019b, Derecho evolving from a mesocyclone - A study of 11 August 2017 severe weather outbreak in Poland: Event analysis and high-resolution simulation, Monthly Weather Review, 147 (6), 2283-2306, DOI: 10.1175/MWR-D-18-0330.1.
- Taszarek M.T., Allen J., Púčik T., Hoogewind K.A., Brooks H.E., 2020, Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes, Journal of Climate, 33 (23), 10263-10286, DOI: 10.1175/JCLI-D-20-0346.1.
- Wang P., Shi J., Hou J., Hu Y, 2018, The identification of hail storms in the early stage using time series analysis, Journal of Geophysical Research. Atmospheres, 123 (2), 929-947, DOI: 10.1002/2017JD027449.
- Wapler K., 2013, High-resolution climatology of lightning characteristics within Central Europe, Meteorology and Atmospheric Physics, 122, 175-184, DOI: 10.1007/s00703-013-0285-1.
- Williams E., Boli B., Matlin A., Weber M., Hodanish S., Sharp D., Goodman S., Raghavan R., Buechler D., 1999, The behavior of total lightning activity in severe Florida thunderstorms, Atmospheric Research, 51 (3-4), 245-265, DOI: 10.1016/S0169- 8095(99)00011-3.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-999dd189-4959-4d70-8a9e-e10ebeff1a4c