Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 52, No. 1 | 124--136
Tytuł artykułu

Post-Dredging Nitrogen Dynamics at the Sediment–Water Interface : the Shallow, Eutrophic Mogan Lake, Turkey

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sedimentation and resuspension of various forms of nitrogen in wetlands determines the direction of the nitrogen dynamics. Mogan Lake, in the Gölbaşı Special Environmental Protection Area, is one of the most important Ramsar-nominated wetlands in Turkey. Lake management applications have been performed by the local managers since 2008, including sediment cleaning activities such as dredging. In this context, the aim was to quantitatively predict the nitrogen dynamics (ammonium and nitrate release/uptake in the positive and/or negative direction) at the sediment–water interface, which has not been addressed in the eutrophication and sediment-related studies conducted to date on the lake in question. Sediment ammonium and nitrate flux were estimated to be between −9.16 and 0.36 µg m−2 d−1 and between −67.2 and 35.16 µg m−2 d−1, respectively. The estimations for sediment nitrogen flux in Mogan Lake did not show a regular seasonal or spatial fluctuation. Our results demonstrate that low nitrogen release levels in Mogan Lake do not pose a threat to its nutrient level. In conclusion, both monitoring and reducing external loading is still the top priority for a long-term recovery of water quality in the process of freshwater ecosystems.
Wydawca

Rocznik
Strony
124--136
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Department of Fisheries and Aquaculture Engineering, Faculty of Agriculture, Ankara University, Ankara, Türkiye, latopcu@ankara.edu.tr
  • Ankara University, Ankara, Türkiye
Bibliografia
  • [1]. Akkoyunlu, A., & Karaaslan, Y. (2015). Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX Model. Environmental Science and Pollution Research International, 22, 14349-14357. https://doi.org/10.1007/s11356-015-5027-0 PMID:26257116
  • [2]. Anonymous. (2007). Lake Machado nutrient flux study. The Southern California Coastal Water Research Project.
  • [3]. Anonymous (2016). T.C. Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü. Göller ve Sulak Alanlar Eylem Planı, 2016-2018, syf:27-30. Ankara (in Turkish).
  • [4]. APHA. (1995). Standard Methods for the Examination of Water and Wastewater. 19th Edition, American Public Health Association Inc., New York.
  • [5]. Burger, D. F., Hamilton, D. P., Pilditch, C. A., & Gibbs, M. M. (2007). Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia, 584(1), 13-25. https://doi.org/10.1007/s10750-007-0582-0
  • [6]. Burnak, S. L., & Beklioğlu, M. (2000). Macrophyte-dominated clearwater state of lake Mogan. Turkish Journal of Zoology, 24(3), 305-314.
  • [7]. Delincé, G. (1992). The Ecology of the Fish Pond Ecosystem. Kluwer Academic Publishers, Netherlves, Pp: 230. https://doi.org/10.1007/978-94-017-3292-5
  • [8]. Deng, J., Lu, X., Hu, W., & Xu, Z. (2022). Nutrients and organic matter in the surface sediment of a submerged macrophyte zone in a eutrophic lake: Implications for lake management. International Journal of Sediment Research, 37(3), 307-316. https://doi.org/10.1016/j.ijsrc.2021.11.003
  • [9]. Fakıoğlu, Ö., & Pulatsü, S. (2005). Mogan Gölü’nde (Ankara) bazı restorasyon önlemleri sonrası dış kaynaklı fosfor yükünün belirlenmesi. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi [in Turkish]. Journal of Agricultural Sciences, 15(1), 63-69.
  • [10]. Gökmen, M. (2004). Dissolved inorganic nitrogen removal efficiency of the reed beds surrounding Lake Mogan using modelling approaches. The Degree of Master Science, Middle East Technical University (METU), Biology Department, 110, Ankara.
  • [11]. Hakanson, L., & Jansson, M. (2002). Principles of Lake Sedimentology. The Blackburn Pres.
  • [12]. Jeppesen, E., Meerhoff, M., Jacobsen, B. A., Hansen, R. S., Søndergaard, M., Jensen, J. P., Lauridsen, T. L., Mazzeo, N., & Branco, C. W. C. (2007). Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia, 581(1), 269-285. https://doi.org/10.1007/s10750-006-0507-3
  • [13]. Kacar, B. (1995). Bitki ve Toprağın Kimyasal Analizleri 3: Toprak Analizleri Ankara Üniersitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları, No:3, 705 s.
  • [14]. Kapan, C. (2011). Mogan Gölü (Ankara) kirlilik incelemesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloj, Anabilim Dalı, 97, Konya (in Turkish).
  • [15]. Karakoç, G., Erkoç, F. Ü., & Katircioğlu, H. (2003). Water quality and impacts of pollution sources for Eymir and Mogan Lakes (Turkey). Environment International, 29(1), 21-27. https://doi.org/10.1016/S0160-4120(02)00128-9 PMID:12605932
  • [16]. Kesici, T., & Kocabaş, Z. (2007). Biyoistatistik. Ankara Üniversitesi Eczacılık Fakültesi, Ankara 368 s.
  • [17]. Klapwijk, A., & Snodgrass, W. J. (1982). Experimental measurement of sediment nitrification and denitrification in Hamilton Harbour, Canada. Hydrobiologia, 91-92, 207-216. https://doi.org/10.1007/BF02391937
  • [18]. Laurent, A., Fennel, K., Wilson, R., Lehrter, J., & Devereux, R. (2016). Parameterization of biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model. Biogeosciences, 13, 77-94. www.biogeosciences.net/13/77/2016/doi:10.5194/bg-13-77-2016 https://doi.org/10.5194/bg-13-77-2016
  • [19]. Lavelle, A. M., Bury, N. R., O’Shea, F. T., & Chadwick, M. A. (2019, March 13). Influence of urban river restoration on nitrogen dynamics at the sediment-water interface. PLoS One,14, e0212690. Advance online publication. https://doi.org/10.1371/journal.pone.0212690 PMID:30865649
  • [20]. Lavery, P. S., Oldham, C. E., & Ghisalberti, M. (2001). The use of Fick’s First Law for predicting porewater nutrient flux under diffusive conditions. Hydrological Processes, 15(13), 2435-2451. https://doi.org/10.1002/hyp.297
  • [21]. Lee, H. W., Lee, Y. S., Kim, J., Lim, K. J., & Choi, J. H. (2019). Contribution of Internal Nutrients Loading on the Water Quality of a Reservoir. Water (Basel), 11(7), 1409-1425. https://doi.org/10.3390/w11071409
  • [22]. Mohammed, S. M., & Johnstone, R. W. (2002). Porewater nutrient profiles and nutrient sediment-water exchange in a tropical mangrove waterway, Mapopwe Creek, Chwaka Bay, Zanzibar. African Journal of Ecology, 40(2), 172-178. https://doi.org/10.1046/j.1365-2028.2002.00364.x
  • [23]. Moss, B. (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200-201, pages367-377. https://doi.org/10.1007/BF02530354
  • [24]. Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y., & Li, S. (2017). Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China. Marine Pollution Bulletin, 114, 705-714. https://doi.org/10.1016/j.marpolbul.2016.10.056 PMID:27802871
  • [25]. Müller, B., Thoma, R., Baumann, K. B. L., Callbeck, C. M., & Schubert, C. J. (2021). Nitrogen removal processes in lakes of different trophic states from on-site measurements and historic data. Aquatic Sciences, 83(2), 37. https://doi.org/10.1007/s00027-021-00795-7 PMID:33785997
  • [26]. Nowlin, W. N. H., Evarts, J. N., & Vanni, M. J. (2005). Release rates and potential fates of nitrogen and phosphorous from sediments in a Eutrophic Reservoir. Freshwater Biology, 50(2), 301-322. https://doi.org/10.1111/j.1365-2427.2004.01316.x
  • [27]. Özkundakci, D., Hamilton, D. P., & Gibbs, M. M. (2011). Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia, 661(1), 5-20. https://doi.org/10.1007/s10750-010-0358-9
  • [28]. Pulatsu, S., & Topcu, A. (2009). Seasonal and vertical distributions of porewater phosphorus and iron concentrations in a macrophyte-dominated eutrophic lake. Journal of Environmental Biology, 30(5, Suppl), 801-806. PMID:20143709
  • [29]. Pulatsü, S., & Karabacak, O. N. (2003). Bazı restorasyon önlemleri sonrası Mogan Gölü’nde besin düzeyinin belirlenmesi. Acta Aquatica Turcica, 2(10), 7-14.
  • [30]. Qu, W., Morrison, R. J., & West, R. J. (2003). Inorganic nutrient and oxygen fluxes across the sediment-water ınterface in the inshore macrophyte areas of a shallow Estuary (Lake Illawara, Australia). Hydrobiologia, 492, 119-127. https://doi.org/10.1023/A:1024817912671
  • [31]. Scheffer, M. (1998). Ecology of Shallow Lakes. Kluwer Academic Publishers.
  • [32]. Seitzinger, S. P., & Kroeze, C. (1998). Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles,12(1), 93-113. https://doi.org/10.1029/97GB03657
  • [33]. Serpa, D., Falcao, M., Duarte, P., da Fonseca, C., & Vale, C. (2007). Evaluation of the ammonium and phosphate release from intertidal and subtidal sediments of a shallow Coastal Lagoon (Ria Formosa-Portugal): A modelling approach. Biogeochemistry, 82(3), 291-304. https://doi.org/10.1007/s10533-007-9076-4
  • [34]. Shen, Y., Huang, Y., Hu, J., Li, P., Zhang, C., Li, L., Xu, P., Zhang, J., & Chen, X. (2020). The nitrogen reduction in eutrophic water column driven by Microcystis blooms. Journal of Hazardous Materials, 385, 121578. https://doi.org/10.1016/j.jhazmat.2019.121578 PMID:31732343
  • [35]. Shrestha, M. K., & Lin, C. K. (1996). Determination of phosphorus saturation level in relation to clay content in formulated pond muds. Aquacultural Engineering, 15(6), 441-459. https://doi.org/10.1016/S0144-8609(96)01007-2
  • [36]. Tang, S., Liao, Y., Xu, Y., Dang, Z., Zhu, X., & Ji, G. (2020). Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresource Technology, 314, 123759. https://doi.org/10.1016/j.biortech.2020.123759 PMID:32654809
  • [37]. Topçu, A., & Pulatsu, S. (2017). Evalution of some management strategies in eutrophic Mogan Lake, Turkey: Phosphorus mobility in the sediment-water interface. Applied Ecology and Environmental Research, 15(4), 705-717. https://doi.org/10.15666/aeer/1504_705717
  • [38]. Topcu, A., & Pulatsü, S. (2008). Phosphorus fractions in sediment profiles of the eutrophic Lake Mogan. Fresenius Environmental Bulletin, 17(2), 164-172.
  • [39]. Vitrousek, P. M., Aber, J. D., & Howarth, R. W. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737-750.
  • [40]. Yan, J., Wang, S., Wu, L., Li, S., Li, H., Wang, Y., Wu, J., Zhang, H., & Hong, Y. (2020). Long-term ammonia gas biofiltration through simultaneous nitrification, anommox and denitrification process with limited N2O emission and negligible leachate production. Journal of Cleaner Production, 270, 122406. https://doi.org/10.1016/j.jclepro.2020.122406
  • [41]. Yu, Q., Wang, H. Z., Li, Y., Shao, J. C., Liang, X. M., Jeppesen, E., & Wang, H. J. (2015). Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations. Water Research, 83, 385-395. https://doi.org/10.1016/j.watres.2015.06.053 PMID:26196308
  • [42]. Wang, J., Chen, J., Yu, P., Yang, X., Zhang, L., Geng, Z., & He, K. (2020). Oxygenation and synchronous control of nitrogen and phosphorus release at the sediment-water interface using oxygen nano-bubble modified material. The Science of the Total Environment, 725, 138258. https://doi.org/10.1016/j.scitotenv.2020.138258 PMID:32298884
  • [43]. Wang, W. H., Wang, Y., Zhao, K. X., Zhu, Z., & Han, X. Y. (2022). Active and synchronous control of nitrogen and organic matter release from sediments induced with calcium peroxide. The Science of the Total Environment, 802, 149855. https://doi.org/10.1016/j.scitotenv.2021.149855 PMID:34455280
  • [44]. Wu, T., Qin, B., Brookes, J. D., Yan, W., Ji, X., & Feng, J. (2019). Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective. The Science of the Total Environment,650, 1554-1565. https://doi.org/10.1016/j.scitotenv.2018.09.145 PMID:30308841
  • [45]. Zhang, J., Hei, P., Shang, Y., Yang, J., Wang, L., Yang, T., Zhou, G., & Chen, F. (2021). Internal nitrogen cycle in macrophyte dominated eutrophic lakes: Mechanisms and implications for ecological restoration. ACS ES&T Water, 1(11), 2359-2369. https://doi.org/10.1021/acsestwater.1c00203
  • [46]. Zhang, Y., & Angelidaki, I. (2012). Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Research, 46(19), 6445-6453. https://doi.org/10.1016/j.watres.2012.09.022 PMID:23034447
  • [47]. Zhang, M., Xu, J., & Xie, P. (2008). Nitrogen dynamics in large shallow eutrophic Lake Chaohu, China. Environmental Geology (Berlin), 55(1), 1-8. https://doi.org/10.1007/s00254-007-0957-6
  • [48]. Zhong, J., Wen, S., Zhang, L., Wang, J., Liu, C., Yu, J., Zhang, L., & Fan, C. (2021). Nitrogen budget at sediment-water interface altered by sediment dredging and settling particles: Benefits and drawbacks in managing eutrophication. Journal of Hazardous Materials, 406, 124691. https://doi.org/10.1016/j.jhazmat.2020.124691 PMID:33296762
  • [49]. Zhu, Y., Jin, X., Tang, W., Meng, X., & Shan, B. (2019). Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China. Journal of Environmental Sciences (China), 76, 319-328. https://doi.org/10.1016/j.jes.2018.05.024 PMID:30528023
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9958e141-909a-4185-84cd-fa1110228a00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.