Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 1 | 79--84
Tytuł artykułu

Prognosticating the Shade Change after Softener Application using Artificial Neural Networks

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Softener application on fabric surface facilitates the process and wear abilities of the fabric. However, the application of softeners and other functional finishes influence the color of dyed fabrics, which results in shade change in the final finished fabrics. This article presents the method of intelligent prediction of the shade change of dyed knitted fabrics after finishing application by using artificial neural networks (ANNs). Individual neural networks are trained for the prediction of delta values (ΔL, Δa, Δb, Δc, and Δh) of finished samples with the help of reflectance values of the knitted dyed samples along with color, shade percentage, and finishing concentrations, which were selected as input parameters. The trained ANNs were validated through “holdout” and “cross-validation” techniques. The trained ANNs were combined to develop the model for shade prediction. The developed system can predict the shade change with >90% accuracy and help to decrease the rework and reprocessing in the wet processing industries.
Wydawca

Rocznik
Strony
79--84
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Fibre and Textile Technology, University of Agriculture, Faisalabad, Pakistan
  • Department of Fibre and Textile Technology, University of Agriculture, Faisalabad, Pakistan, assadfarooq@uaf.edu.pk
  • Kays & Emms Pvt. Ltd., Faisalabad, Pakistan
  • Kays & Emms Pvt. Ltd., Faisalabad, Pakistan
Bibliografia
  • [1] Schindler, W. D., Hauser, P. J. (2004). Chemical finishing of textiles. Elsevier.
  • [2] Mallinson, P. (1974). Textile softeners–properties, chemistry, application and testing. Journal of the Society of Dyers and Colourists, 90(2), 67–72.
  • [3] Nostadt, K., Zyschko, R. (1997). Softeners in the textile finishing industry. Colourage, 44, 53–58.
  • [4] Woodruff, F., Heywood, D. (2003). Coating, laminating, flocking and prepregging. Textile Finishing. Society of Dyers and Colourists Bradford.
  • [5] Wahle, B., Falkowski, J. (2002). Softeners in textile processing. Part 1: An overview. Review of Progress in Coloration and Related Topics, 32(1), 118–124.
  • [6] Tomasino, C. (1992). Chemistry & technology of fabric preparation & finishing. North Carolina State University NC.
  • [7] Güneşoğlu, C., Kut, D., Orhan, M. (2007). Effect of the particle size of finishing chemicals on the color assessment of treated cotton fabrics. Journal of Applied Polymer Science. 104(4), 2587–2594.
  • [8] Habereder, P., Bereck, A. (2002). Part 2: Silicone softeners. Review of Progress in Coloration and Related Topics, 32(1), 125–137.
  • [9] Parvinzadeh, M., Najafi, H. (2008). Textile softeners on cotton dyed with direct dyes: Reflectance and fastness assessments. Tenside Surfactants Detergents, 45(1), 13–16.
  • [10] Farooq, A., Cherif, C. (2008). Use of artificial neural networks for determining the leveling action point at the auto-leveling draw frame. Textile Research Journal, 78(6), 502–509.
  • [11] Furferi, R., Carfagni, M. (2010). Prediction of the color and of the color solidity of a jigger-dyed cellulose-based fabric: A cascade neural network approach. Textile Research Journal, 80(16), 1682–1696.
  • [12] Furferi, R., Governi, L., Volpe, Y. (2012). Modelling and simulation of an innovative fabric coating process using artificial neural networks. Textile Research Journal. 82(12), 1282–1294.
  • [13] Hui, C. L., Ng, S. F. (2009). Predicting seam performance of commercial woven fabrics using multiple logarithm regression and artificial neural networks. Textile Research Journal. 79(18), 1649–1657.
  • [14] Jawahar, M., Narasimhan Kannan, C. B., Kondamudi Manobhai, M. (2015). Artificial neural networks for colour prediction in leather dyeing on the basis of a tristimulus system. Coloration Technology, 131(1), 48–57.
  • [15] Liu, J., Zuo, B., Vroman, P., Rabenasolo, B., Zeng, X., Bai, L. (2010). Visual quality recognition of nonwovens using wavelet texture analysis and robust Bayesian neural network. Textile Research Journal, 80(13), 1278–1289.
  • [16] Liu, J., Zuo, B., Zeng, X., Vroman, P., Rabenasolo, B., Zhang, G. (2011). A comparison of robust Bayesian and LVQ neural network for visual uniformity recognition of nonwovens. Textile Research Journal, 81(8), 763–777.
  • [17] Van Nguyen, T. H., Nguyen, T. T., Ji, X., Guo, M. (2018). Predicting color change in wood during heat treatment using an artificial neural network model. BioResources, 13(3), 6250–6264.
  • [18] Hecht-Nielsen, R. (1988). Applications of counterpropagation networks. Neural Networks, 1(2), 131–139.
  • [19] Bedaux, J., Van Leeuwen, W. (2004). Biologically inspired learning in a layered neural net. Physica A: Statistical Mechanics and its Applications, 335(1–2), 279–299.
  • [20] Farooq, A., Cherif, C. (2012). Development of prediction system using artificial neural networks for the optimization of spinning process. Fibers and Polymers, 13(2), 253–257.
  • [21] Fernando, T., Maier, H., Dandy, G., May, R. (2005). Efficient selection of inputs for artificial neural network models. In: Proceedings of MODSIM 2005 International Congress on Modelling and Simulation: Modelling and Simulation Society of Australia and New Zealand pp. 1806–1812.
  • [22] Lingireddy, S., Brion, G. M. (2005). Artificial neural networks in water supply engineering. ASCE Publications.
  • [23] Yamazaki, K., Kawanabe, M., Watanabe, S., Sugiyama, M., Müller, K.-R. (2007). Asymptotic Bayesian generalization error when training and test distributions are different. In: Proceedings of the 24th International Conference on Machine Learning: ACM; pp. 1079–1086.
  • [24] Cheng, L., Adams, D. L. (1995). Yarn strength prediction using neural networks: Part I: Fiber properties and yarn strength relationship. Textile Research Journal, 65(9), 495–500.
  • [25] Zhu, R., Ethridge, M. (1996). The prediction of cotton yarn irregularity based on the ‘AFIS’ measurement. Journal of The Textile Institute, 87(3), 509–512.
  • [26] Tsoutseos, A., Nobbs, J., Boussias, C. (1999). Methods of improving the colour match prediction in textile dyeing using novel colour appearance models and neural networks. In: Proceedings of 3rd International Conference Gent, Belgium, pp. 196–213.
  • [27] Yadav, V., Kothari, V. (2004). Prediction of air-jet textured yarn properties using statistical method and neural network.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-99340b05-5159-49f4-a5f1-2e38a287668d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.