Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 54, nr 1 | 245--258
Tytuł artykułu

Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory. Moreover, we showed new decay estimates of global solution.
Wydawca

Rocznik
Strony
245--258
Opis fizyczny
Bibliogr 14 poz.
Twórcy
autor
  • University of Djillali Liabes B.P. 89, Didi bel Abbas 22000, Algeria, y.bidi@ens-lagh.dz
  • Laboratory of Analysis and Control of Partial Differential Equations, University of Ain Temouchent Belhadj Bouchaib -B.P. 284 RP, Ain Temouchent 46000, Algeria, a.beniani@yahoo.fr
  • Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass, Qassim, Saudi Arabia; Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma. B.P. 401, Guelma 24000, Algeria, k.zennir@qu.edu.sa
  • Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass, Qassim, Saudi Arabia, ah.mohamed@qu.edu.sa
Bibliografia
  • [1] R. C. MacCamy, V. J. Mizel, and T. I. Seidman, Approximate boundary controllability for the heat equation, J. Math. Anal. Appl. 23 (1968), no. 3, 699–703, DOI: https://doi.org/10.1016/0022-247X(68)90148-0.
  • [2] R. C. MacCamy, V. J. Mizel, and T. I. Seidman, Approximate boundary controllability of the heat equation, II, J. Math. Anal. Appl. 28 (1969), no. 3, 482–492, DOI: https://doi.org/10.1016/0022-247X(69)90002-X.
  • [3] E. Zuazua, Controllability of Partial Differential Equations, 3rd cycle, Castro Urdiales, Espagne, 2006.
  • [4] E. Azroul, A. Benkirane, and M. Shimi, Eigenvalue problem involving the fractional p x ( )-Laplacian operator, Adv. Oper. Theory 4 (2019), no. 2, 539–555, DOI: https://doi.org/10.15352/aot.1809-1420.
  • [5] L. M. DelPezzo and J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory 2 (2017),no. 4, 435–446, DOI: https://doi.org/10.22034/aot.1704-1152.
  • [6] Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qual. Theory Diff. Equ. 2016 (2016), no. 70, 1-17, http://www.math.u-szeged.hu/ejqtde/p5288.pdf.
  • [7] U. Kaufmann, J. D. Rossi, and R. Vida, Fractional Sobolev spaces with variables exponent and fractional p x ( )-Laplacian, Electron. J. Qual. Theory Differ. Equ. (2017), no. 76, 1–10, DOI: https://doi.org/10.14232/EJQTDE.2017.1.76.
  • [8] Q. Lin, X. T. Tian, R. Z. Xu, and M. N. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 7, 2095–2107, DOI: http://dx.doi.org/10.1007/s00205-009-0241-x.
  • [9] N. Pan, P. Pucci, R. Z. Xu, and B. L. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ. 19 (2019), 615–643, DOI: https://doi.org/10.1007/s00028-019-00489-6.
  • [10] N. Pan, P. Pucci, and B. L. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ. 18 (2018), 385–409, DOI: https://doi.org/10.1007/s00028-017-0406-2.
  • [11] J. L. Shomberg, Well-posedness of semilinear strongly damped wave equations with fractional diffusion operators and C0 potentials on arbitrary bounded domains, Rocky Mountain J. Math. 49 (2019), no. 4, 1307 –1334, DOI: https://doi.org/10.1216/RMJ-2019-49-4-1307.
  • [12] E. DiNezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573, DOI: https://doi.org/10.1016/j.bulsci.2011.12.004.
  • [13] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105–2137, DOI: http://dx.doi.org/10.3934/dcds.2013.33.2105.
  • [14] M. Nakao, Asymptotic stability of the bounded or almost periodic solutions of the wave equation with nonlinear dissipative term, J. Math. Anal. Appl. 58 (1977), no. 2, 336–343, DOI: https://doi.org/10.1016/0022-247X(77)90211-6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-98d76517-7e2b-4010-beda-d6b70ba21bf8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.