Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 3 | 236--248
Tytuł artykułu

Dynamic Processes of Substructural Rearrangement under Friction of Carbon Steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of heat treatment (tempering temperature after quenching) of medium carbon steels (steel 45 and steel 50) on tribological indicators at sliding friction without lubrication in connection with the change in strength and rheological elastic properties of steel, controlling the dissipative properties of the frictional contact has been studied. Tribotechnical tests were conducted according to two schemes. A high-temperature tribometer was used for “soft” friction according to the “ball-plane” scheme, which allowed varying the temperature of the friction contact. Influence of load-rate modes was studied in more “hard” conditions on the friction machine under the “finger-disk” scheme. Substructural transformations of steel caused by heat treatment were evaluated by changes in amplitude-dependent internal friction on a torsion pendulum-type machine, which also allowed measuring frictional damping (contact internal friction) in the preliminary displacement mode. The interrelation between hardness, elastic modulus and internal friction of steel and wear resistance, wear capacity, friction coefficient and the level of frictional damping has been established. It is shown that the growth of elastic modulus and increase of steel relaxation resistance after the appropriate heat treatment are conjugated with the development of adhesion and setting, which, as topochemical reactions in the solid phase, are the leading forms of contact stress relaxation under the above conditions. Correlation of tribological indicators of external friction with amplitude-dependent and relaxation (temperature-dependent) internal friction taking into account structural state of steel and friction temperature regime is established. Substructural preconditions, dynamic relaxation mechanisms of hardening and load-temperature friction conditions under which martensitic structures exhibit abnormally high wear resistance and significant growth of frictional damping level are considered. The tribological analogue of the Porteuen - Le Chatelier effect, manifesting in the form of frictional self-oscillations in the range of temperatures of dynamic deformation aging is established. A treatment of the nature of the Kael-Ziebel effect, the temperature-rate and load localization of which in friction is associated with the temperature range of dynamic strain aging with Snook-Kester relaxation superimposed, is proposed.
Wydawca

Rocznik
Strony
236--248
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
  • Department of Construction and Civil Security, Khmelnitskiy National University, 11, Instytutska street, 29016 Khmelnitskiy, Ukraine
  • Department of Fundamentals of Technology, Lublin University of Technology, Nadbystzrycka 38, 20-618 Lublin, Poland, mpashechko@hotmail.com
  • Department of Construction and Civil Security, Khmelnitskiy National University, 11, Instytutska street, 29016 Khmelnitskiy, Ukraine
  • Department of Construction and Civil Security, Khmelnitskiy National University, 11, Instytutska street, 29016 Khmelnitskiy, Ukraine
Bibliografia
  • 1. Drozdow Y.N., Yudin E.G., Belov A.I. Applied Tribology (Friction, Wear, Lubrication). M.: Eco-Press, 2010.
  • 2. Hutchings I., Shipwaj P. Tribology: Friction and wear of engineering materials. Elsevier, Ltd, 2017.
  • 3. Shevelya V.V., Sokolan Yu.S. Dynamic relaxation processes during friction of steel under the influence of heat treatment. Strength Problems 2015; 4: 16-25.
  • 4. Shevelya VV, Trytek A. Rheology of viscoelastic frictional contact. Problems of Tribology 2010; 4: 5-15.
  • 5. Shevelya V.V., Kalda G.S., Sokolan Yu.S. On the connection between relaxation and dissipative processes during steel friction. Friction and Wear 2020; 41(1): 19-28.
  • 6. Golovin I.S. Internal Friction and Mechanical Spectroscopy. M.: Ed. MISiS, 2012.
  • 7. Shevelya V.V., Oleksandrenko V.P. Tribochemistry and Rheology of Wear Resistance. Khmelnitsky: KhNU, 2006.
  • 8. Postnikov V.S., Tavadze F.N., Gordienko L.K. In- ternal Friction in Metals and Alloys. Springer USA, 2013.
  • 9. Farber V.M., Selivanova O.V., Khotinov V.F., Polukhin O.N. Strein Aging in Steels. Ekaterinburg, 2018.
  • 10. Zgang Q., Jiang Z., Jiang H., Chen Z., Wu X. On the Propagation and pulsation of Portevin-Le Shatelier deformation bands: An experimental study with digital specle patterm metrology. Int. J. Plasticity 2005; 21: 2150-2173.
  • 11. Molaei M.J., Ekrami A. The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morfology. Materials Science and Engineering 2009; 527: 235-238.
  • 12. Callahan M., Perlade A., Schmitt J. Interactions of negative strain rate sensitivity, martensite transformation advanced high-strength steels. Materials Science and Engineering 2019; 754: 140-151.
  • 13. Koyama M., Sawaguchi T., Lee T. Work Hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in steels. Materials Science and Engineering 2011; 528: 7310-7316.
  • 14. Drew E. The effect of strain aging on plastic deformation in high strength steel. McMaster University, Hamilton, 2017.
  • 15. Makarov A.V., Korshunov L.G. Strength and wear resistance of nanocrystallining structures of friction surfaces of steels with a martensitic structure Izvestiya Vuzov, Physics 2004; 8: 65-80.
  • 16. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels. FMM 2019; 120(3): 327-336.
  • 17. Lakhtin Y. Engineering Materials and Metallurgy. S. Chand and Company Limited, 2006.
  • 18. Petrova L.P., Ignatenko N.M., Bulgakova A.A. Features of internal friction in ferromagnets. Proceeding of the Altai State University 2022; 4: 44-47.
  • 19. Blanter M.S., Golovin I.S., Neuhäuser H., Sinning H.R. Internal Friction in Metallic Materials: A Handbook. Berlin, Heidelberg: Springer Science & Business Media, 2007.
  • 20. Muraviev V.I., Bakhmatov P.V., Sablin P.A., Grigoriev V.V. Activation of solid-phase diffusion interaction during the formation of welded joints. M.: Infraengineering, 2018.
  • 21. Caillard D. Dynamic strain aging in iron alloys: The shielding effect of carbon. Acta Matrialia 2016; 112: 273-284.
  • 22. Golovin I.S. Internal Friction in Metallic Materials. Springer USA, 2007.
  • 23. Huang Z., Wagner D., Bathias C. Some Metallurgical Aspects of Dynamic Strain Aging Effect on the Low Fatigue Behavior of C-Mn Steels. International Journal of Fatigue 2015; 80: 113-120.
  • 24. Mardoukhi A., Ramo J., Iuoristo T., Roth A., Hokka M., Kuokkala V. Effects of microstructure on the dynamic strain aging of ferritic-perlitic steels at right strain rates. EPJ Web of Conferences 2018; 183.
  • 25. Aleshin G.N., Raab G.I., Kadirov I.S. Features of dynamic strain aging of low-carbon steels during severe plastic deformation processing. Key Engineering Materials 2017; 743: 191-196.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-98d0b2bf-5ada-4c02-b87b-ab29cb96622d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.