Warianty tytułu
Języki publikacji
Abstrakty
In situ calibration is a proposed strategy for continuous as well as initial calibration of an impact disdrometer. In previous work, a collocated tipping bucket had been utilized to provide a rainfall rate based ~11/3 moment reference to an impact disdrometer’s signal processing system for implementation of adaptive calibration. Using rainfall rate only, transformation of impulse amplitude to a drop volume based on a simple power law was used to define an error surface in the model’s parameter space. By incorporating optical extinction second moment measurements with rainfall rate data, an improved in situ disdrometer calibration algorithm results due to utilization of multiple (two or more) independent moments of the drop size distribution in the error function definition. The resulting improvement in calibration performance can be quantified by detailed examination of the parameter space error surface using simulation as well as real data.
Czasopismo
Rocznik
Tom
Strony
1450--1477
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Easi-ESC, GMRO Lab, Kennedy Space Center, FL, USA, john.e.lane@nasa.gov
autor
- Cyprus University of Technology, Lemesos, Cyprus, takis.kasparis@cut.ac.cy
autor
- NASA Granular Mechanics and Regolith Operations, KSC, FL, USA, Philip.Metzger@ucf.edu
- Florida Space Institute, University of Central Florida, Orlando, FL, USA
autor
- CFRSL, University of Central Florida, Orlando, FL, USA, ljones@ucf.edu
Bibliografia
- [1] Ahammad, P., C.R. Williams, T. Kasparis, J. Lane, F. Merceret, and L. Jones (2002), Vertical air motion estimates from the disdrometer flux conservation model and related experimental observations. In: Proc. SPIE, Signal Processing, Sensor Fusion, and Target Recognition XI, Vol. 4729, 384–393, DOI: 10.1117/12.477624. http://dx.doi.org/10.1117/12.477624
- [2] Atlas, D. (1953), Optical extinction by rainfall, J. Meteor. 10,6, 486–488, DOI: 10.1175/1520-0469 (1953)010〈0486:OEBR〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0469(1953)010<0486:OEBR>2.0.CO;2
- [3] Atlas, D., and C.W. Ulbrich (1977), Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band, J. Appl. Meteor. 16,12, 1322–1331, DOI: 10.1175/1520-0450 (1977)016〈1322:PAAIRM〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2
- [4] Berg, M.J., C.M. Sorensen, and A. Chakrabarti (2011), A new explanation of the extinction paradox, J. Quant. Spectrosc. Radiat. Transfer 112,7, 1170–1181, DOI: 10.1016/j.jqsrt.2010.08.024. http://dx.doi.org/10.1016/j.jqsrt.2010.08.024
- [5] Gunn, R., and G.D. Kinzer (1949), The terminal velocity of fall for water droplets in stagnant air, J. Meteorol. 6,4, 243–248, DOI: 10.1175/1520-0469(1949) 006<0243:TTVOFF>2.0.CO;2. http://dx.doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
- [6] Jong, S., and R. Hut (2011), Comparison of different calibration methods of a low cost disdrometer, Geophys. Res. Abstr. 13, EGU2011-10179.
- [7] Kasparis, T., J. Lane, and L. Jones (2010), Modeling of an impact transducer for in situ adaptive disdrometer calibration. In: Proc. 4th Int. Symposium on Communications, Control and Signal Processing, 3–5 March 2010, Limassol, Cyprus, DOI: 10.1109/ISCCSP.2010.5463471.
- [8] Lane, J., F. Merceret, T. Kasparis, D. Roy, B. Muller, and W. Linwood Jones (2000), Radar volume reflectivity estimation using an array of groundbased rainfall drop size detectors. In: Proc. SPIE, Signal Processing, Sensor Fusion, and Target Recognition IX, Vol. 4052, 363–374. http://dx.doi.org/10.1117/12.395088
- [9] Lane, J.E., D.W. Sharp, T.C. Kasparis, and N.J. Doesken (2008), Hail disdrometer array for launch systems support. In: 12th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface; 20–24 Jan. 2008, New Orleans, LA, USA.
- [10] Lane, J.E., L. Jones, T.C. Kasparis, and P. Metzger (2013), Measurements of DSD second moment based on laser extinction. In: Proc. 27th Conf. American Meteorological Society, 7 January 2013, Austin, TX, USA.
- [11] Löffler-Mang, M., and J. Joss (2000), An optical disdrometer for measuring size and velocity of hydrometeors, J. Atmos. Ocean. Technol. 17,2, 130–139, DOI: 10.1175/1520-0426(2000)017〈0130:AODFMS〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
- [12] Marshall, J.S., and W.M.K. Palmer (1948), The distribution of raindrops with size, J. Meteorol. 5,4, 165–166, DOI: 10.1175/1520-0469 (1948)005〈0165: TDORWS〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
- [13] Metzger, P.T., J.E. Lane, R.A. Carilli, J.M. Long, and K.L. Shawn (2010), Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch, Acta Astronaut. 67,1-2, 217–229, DOI: 10.1016/j.actaastro.2009.10.020. http://dx.doi.org/10.1016/j.actaastro.2009.10.020
- [14] Prodi, F., C. Caracciolo, L.P. D’Adderio, M. Gnuffi, and E. Lanzinger (2011), Comparative investigation of Pludix disdrometer capability as Present Weather Sensor (PWS) during the Wasserkuppe campaign, Atmos. Res. 99,1, 162–173, DOI: 10.1016/j.atmosres.2010.09.016. http://dx.doi.org/10.1016/j.atmosres.2010.09.016
- [15] Tapiador, F.J., R. Checa, and M. de Castro (2010), An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers, Geophys. Res. Lett. 37,16, L16803, DOI: 10.1029/2010GL044120. http://dx.doi.org/10.1029/2010GL044120
- [16] Tokay, A., W.A. Petersen, P. Gatlin, and M. Wingo (2013), Comparison of raindrop size distribution measurements by collocated disdrometers, J. Atmos. Ocean. Technol. 30,8, 1672–1690, DOI: 10.1175/JTECH-D-12-00163.1. http://dx.doi.org/10.1175/JTECH-D-12-00163.1
- [17] Uijlenhoet, R., J.-M. Cohard, and M. Gosset (2011), Path-average rainfall estimation from optical extinction measurements using a large-aperture scintillometer, J. Hydrometeorol. 12,5, 955–972, DOI: 10.1175/2011JHM1350.1. http://dx.doi.org/10.1175/2011JHM1350.1
- [18] Widrow, B., and S.D. Stearns (1985), Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, 491 pp
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-98b56e77-6be1-4ba2-99e9-d27cdf1f5689