Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 38, No. 1 | 91--96
Tytuł artykułu

Direct formation of ZnO nanorods by hydrothermal process: study on its optical properties and electron transport

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report a new direct fabrication of the ZnO nanorods (NR) by hydrothermal method, in which the preparation of seed layer is eliminated. We show that the tuning of initial temperature rate during the hydrothermal process plays a key role in the structural modification of the ZnO NR. A highly oriented ZnO NR is successfully fabricated by using a low rate of initial temperature. The increase of optical absorption and electron transport was obtained by reducing the diameter and increasing distribution of the ZnO NR on the substrate. Interestingly, an additional absorption from the defects is obtained in the system, which plays an important role in expanding the optical absorption. Our system will provide a favourable characteristic for developing the high-performance optoelectronic devices with high optical absorption and high electron transport.
Wydawca

Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 50 poz., tab., rys.
Twórcy
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia, nandang.mufti.fmipa@um.ac.id
  • Centre of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
  • Centre of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
  • Centre of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
  • Centre of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
  • Centre of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, East Java, Indonesia
autor
  • NUSNNI-Nanocore, Department of Physics, National University of Singapore, Science Drive 3, Singapore 117542, Singapore
  • Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
Bibliografia
  • [1] BAE S.-Y., Sci. Rep., 7 (2017), 45345.
  • [2] OU S.-L., YU F.-P., WUU D.-S., Sci. Rep., 7 (2017), 14251.
  • [3] WANG X., PEY K.L., YIP C.H., FITZGERALD E.A., ANTONIADIS D.A., J. Appl. Phys., 108 (12) (2010), 124303.
  • [4] KUSHWAHA A., ASLAM M., Int. J. Nanosci., 10 (2011), 635.
  • [5] RAMESH R., LOGANATHAN R., MENON S.S., BASKAR K., SINGH S., RSC Adv., 4 (14) (2014), 7112.
  • [6] MONTENEGRO D.N., SOUISSI A., MARTÍNEZTOMÁS C., MUÑOZ-SANJOSÉ V., SALLET V., J. Cryst. Growth, 359 (2012), 122.
  • [7] RIVERA A., MAZADY A., ANWAR M., Int. J. High Speed El. Sys., 24 (2015), 1520014.
  • [8] PAN C., ZHU J., J. Mater. Chem., 19 (7) (2009), 869.
  • [9] WAGNER R.S., ELLIS W.C., Appl. Phys. Lett., 4 (5) (1964), 89.
  • [10] SHIMIZU T., J. Surf. Sci. Nanotechnol., 10 (2012), 476.
  • [11] LIU C., YUN F., MORKOÇ H., J. Mater. Sci.: Mat. El., 16 (9) (2005), 555.
  • [12] COEY J., Curr. Op. Solid State Mat. Sci., 10 (2) (2006), 83.
  • [13] HERNG T.S., Phys. Rev. Lett., 105 (20) (2010), 207201.
  • [14] HERNG T.S., Adv. Mater., 23 (14) (2011), 1635.
  • [15] YONG Z., Phys. Rev. B, 93 (20) (2016).
  • [16] GUZIEWICZ E., J. Appl. Phys., 105 (2009), 122413.
  • [17] HOFFMAN R.L., NORRIS B.J., WAGER J.F., Appl. Phys. Lett., 82 (2003), 733.
  • [18] DJURIŠIĆ A.B., NG A.M.C., CHEN X.Y., Prog. Quantum El., 34 (4) (2010), 191.
  • [19] WANG J.X., SUN X.W., YANG Y., HUANG H., TANAND O.K., VAYSSIERES L., Nanotechnology, 17 (19) (2006), 4995.
  • [20] RAHMAN M.M., JAMAL A., KHAN S.B., FAISAL M., ACS Appl. Mater. Interface., 3 (2011), 1346.
  • [21] PEARTON S.J.., J. Electron. Mater., 35 (2006), 862.
  • [22] RONNING C., GAO P.X., DING Y., WANG Z.L., SCHWEN D., Appl. Phys. Lett., 84 (5) (2004), 783.
  • [23] YUAN Z., YU J., JIANG Y., Energy Procedia, 12 (2011), 502.
  • [24] PEKSU E., KARAAGAC H., J. Nanomater., 2015 (2015), 10.
  • [25] MICHAEL E.S., SIEGLINDE M.L.P., AKINTUDE I.A., ANDREW J.F., Nanotechnol., 23 (34) (2012), 344009.
  • [26] SHI L., Langmuir, 29 (33) (2013), 10603.
  • [27] KWON D.-K., LEE S.J., MYOUNG J.-M., Nanoscale, 8 (37) (2016), 16677.
  • [28] DANIEL S.C., MATTHEW H., VAN K.E., JONG-IN H., Nanotechnol., 28 (14) (2017), 145203.
  • [29] CHUNG Y.-A., CHANG Y.-C., LU M.-Y., WANG C.-Y., CHEN L.-J., J. Electrochem. Soc., 156 (5) (2009), F75.
  • [30] WU C., HUANG Q., J. Lumin., 130 (11) (2010), 2136.
  • [31] HSU C.-L., CHEN K.-C., J. Phys. Chem. C, 116 (16) (2012), 9351.
  • [32] BANNA G.M.H.U., IL-KYU P., Nanotechnol., 28 (44) (2017), 445402.
  • [33] KURNIAWAN R., Opt. Mater. Express, 7 (11) (2017), 3902.
  • [34] KURNIAWAN R., Mater. Res. Express, 4 (2) (2017), 024003.
  • [35] ZHANG Q., DANDENEAU C.S., ZHOU X., CAO G., Adv. Mater., 21 (41) (2009), 4087.
  • [36] VITTAL R., HO K.-C., Renew. Sust. Energ. Rev., 70 (2017), 920.
  • [37] SUN X., Int. J. Photoenergy, 2017 (2017), 10.
  • [38] ZHANG P., Adv. Mater., 30 (3) (2018), 1703737.
  • [39] PARK N.-G., J. Phys. Chem. Lett., 4 (15) (2013), 2423.
  • [40] SNAITH H.J., J. Phys. Chem. Lett., 4 (21) (2013), 3623.
  • [41] TSENG Z.-L., CHIANG C.-H., WU C.-G., Sci. Rep., 5 (2015), 13211.
  • [42] OEURN C.C., HATIM A., ALI A.M., OMER N., MAGNUS W., Phys. Status Solidi A, 211 (11) (2014), 2611.
  • [43] YANG Z., Sci. Rep., 5 (2015), 11377.
  • [44] GAUTAM K., SINGH I., NIRWAL V.S., SINGH J., PETA K.R., BHATNAGAR P.K., AIP Conf. Proc., 1728 (1) (2016).
  • [45] BARSOUM M.W., Fundamentals of ceramics, Institute of Physics Publishing, Bristol and Philadelphia, 2003.
  • [46] FUAD A., FIBRIYANTI A.A., SUBAKTI, MUFTI N., TAUFIQ A., IOP Conf. Ser. Mater. Sci. Eng., 202 (1) (2017), 012074.
  • [47] IDIAWATI R., IOP Conf. Ser. Mater. Sci. Eng., 202 (1) (2017), 012050.
  • [48] SENTHAMIZHAN A., BALUSAMY B., AYTAC Z., UYAR T., CrystEngComm, 18 (34) (2016), 6341.
  • [49] GSIEA A.M., GOSS J.P., BRIDDON P.R., ALHABASHI R.M., ETMIMI K.M., MARGHANI K.A.S., Int. J. Math. Comput. Phys. Elec. Comput. Eng., 8 (1) (2014), 127.
  • [50] FUJIWARA H., Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9863d52e-023d-41ac-bd3d-6f6c84c107f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.