Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol 54, No. 1 | 79--93
Tytuł artykułu

Superposition Operators in the Space of Functions of Waterman-Shiba Bounded Variation

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present a necessary condition for an autonomous superposition operator to act in the space of functions of Waterman-Shiba bounded variation. We also show that if a (general) superposition operator applies such space into itself and it is uniformly bounded, then its generating function satisfies a weak Matkowski condition.
Wydawca

Rocznik
Strony
79--93
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes Mérida, Venezuela, jgimenez@ula.ve
autor
  • Escuela de Matemáticas, Universidad Central de Venezuela Caracas, Venezuela , nmerucv@gmail.com
  • Departamento de Investigación de Operaciones y Estadistica Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela , lrodriguez@ucla.edu.ve
Bibliografia
  • [1] J. Appell, J. Banas, N. Merentes, Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications 17, Walter de Gruyter, Berlin/Boston 2014.
  • [2] J. Appell, N. Guanda, N. Merentes and J.L. Sánchez, Some boundedness and continuity properties of nonlinear composition operators: a survey, Comm. Applied Anal. vol. 15, no. 2-4 (2011), 153-182.
  • [3] J. Appell, N. Guanda, and M. Väth, Function spaces with the Matkowski property and degeneracy phenomena for composition operators, Fixed Point Theory, vol. 12, no. 2, (2011), 265-284.
  • [4] G. Bourdaud, M. Lanza de Cristoforis, W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer. 22, 2 (2006), 455-487.
  • [5] M. Chaika and D. Waterman, On the invariance of certain classes of functions under composition, Proceedings of the American Mathematical Society, vol. 43 (1974), 345-348.
  • [6] M. Hormozi, A. A. Ledari and F. Prus-Wiśniowski, On p−Λ-Bounded Variation. Bulletin of the Iranian Mathematical Society Vol. 37 No. 4 , pp 35-49 (2011).
  • [7] C. Jordan , Sur la serie de Fourier. C. R. Acad. Sci. Paris. No 2 (1881), 228-230.
  • [8] M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83, 2 (1981), 354-356.
  • [9] M. Kuczma , An Introduction to the Theory of Functional Equations and Inequalities. Second Edition. Birkhäuser Verlag AG Basel.Boston.Berlin (2009).
  • [10] I. Lakatos, Proofs and Refutations, The logic of Mathematical Discovery, Cambridge University Press, 1976.
  • [11] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
  • [12] J. Matkowski, Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr. 283, 7 (2010), 1060-1064.
  • [13] I. P. Natanson, Theory of functions of real variable (Russian), Moskow, 1957.
  • [14] S. Perlman, Functions of generalized variation, Fund. Math. No 105 (1980), 199-211.
  • [15] P. Pierce and D. Waterman, On the invariance of classes Φ BV , ΛBV under composition. Proceedings of the American Mathematical Society. Vol. 132, No 3 (2003), 755-760.
  • [16] M. Shiba, On the absolute convergence of Fourier series of functions class ΛpBV . Sci. Rep. Fukushima Univ. No 30 (1980), 7-10.
  • [17] R. G. Vyas, On the absolute convergence of small gaps Fourier series of functions of ΛpBV . J. Inequal. Pure Appl. Math. No 6 (1), 23 (2005), 1-6.
  • [18] R.G. Vyas, Properties of functions of generalized bounded variation. Mat. Vesnik, No 58 (2006), 91-96.
  • [19] D. Waterman, On the convergence of Fourier series of functions of bounded variation. Studia Math. No 44 (1972), 107-117.
  • [20] D. Waterman, On Λ−bounded variation. Studia Math. No 57 (1976), 33-45.
  • [21] N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72-94.
  • [22] M. Wrbel, Uniformly Bounded Nemytskij operators between the Banach spaces of functions of bounded n−th variation. Journal of mathematical Analysis and Applications. 391 (2012), 451-456.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-986043c1-da99-4ab7-948b-1cad2783946e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.