Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 6 | 137--147
Tytuł artykułu

Phytoremediation of Soils by Cultivation Miscanthus x Giganteus L. and Phalaris arundinacea L.

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Restoring soil fertility and protecting it from pollution are complex scientific tasks of our time that require a set of physical, chemical and biological measures. An important theoretical and applied aspect is the development of new remediation methods to reduce soil degradation processes under the influence of chemical pollution. The publication analyzes the ecological features of the energy crops Miscanthus giganteus L. and Phalaris arundinacea L. as phytoremediation agents of soils contaminated with heavy metals, pesticides, and oil products. The content of toxicants in contaminated soils as a result of energy crops cultivation has significantly decreased, in particular, the content of mobile forms and the mass fraction of heavy metals. The greatest decrease was observed in the content of mobile forms of chromium: in the area contaminated with petroleum products by 0.55 mg/kg when growing reeds and by 1.06 mg/kg when growing miscanthus, and in the area contaminated with pesticides by 3.65 and 5.25 mg/kg, respectively. The gross stibium content decreased in the area contaminated with oil products by 60 mg/kg when growing reeds and by 69.61 mg/kg of soil when growing miscanthus, and by 65.68 and 78.35 mg/kg in the area contaminated with pesticides. The concentration of cadmium in the studied plots where energy crops were grown decreased in the range of 0.131–0.193 mg/kg when growing Phalaris arundinacea L. and by 0.187–0.312 mg/kg when growing Miscanthus giganteus L., respectively. The content of organic pollutants was also significantly reduced.
Wydawca

Rocznik
Strony
137--147
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Zhytomyr Polytechnic State University, Chudnivska St, 103, Zhytomyr, Zhytomyr Oblast, Ukraine
  • Zhytomyr Polytechnic State University, Chudnivska St, 103, Zhytomyr, Zhytomyr Oblast, Ukraine, ke_uvi@ztu.edu.ua
Bibliografia
  • 1. Blum Y.B., Geletukha H.G., Grygoryuk I.P. 2010. The latest technologies of bioenergy conversion. Kyiv: Agrar Media Group. [in Ukrainian]
  • 2. Boretska I.Y., Dzura N.M., Romaniuk O.I. 2021. Phytoremediation of technologically polluted soils using energy crops. Environmental Sciences, 6(39). 72–76. doi: 10.32846/2306-9716/2021.eco.6-39.11 [in Ukrainian]
  • 3. Geletukha H.G., Zhelezna T.A. 2014. Prospects for using agricultural waste for energy production in Ukraine. Analytical note of BAU.7. 12–16. [in Ukrainian]
  • 4. Hrabak N.H., Budykina Y.I. 2014. Technogenically polluted lands and ways of their safe use in the agroindustrial complex. Scientific works. Ecology, 220 (232), 83–87. [in Ukrainian]
  • 5. Tsytsiura Y.G., Shkatula Y.M., Zabarna T.A., Peleh L.V. 2022. Innovative approaches to phytoremediation and phytoremediation in modern farming systems. Vinnytsia: “Druk” LLC, pp. 1200. [in Ukrainian]
  • 6. Kulyk M.I., Galytska M.A., Samoylik M.S., Zhornyk I.I. 2019. Phytoremediation aspects of energy crops use in Ukraine. Agrology, 2(1), 65‒73. doi: 10.32819/2617- 6106.2018.14020 [in Ukrainian]
  • 7. Ilyashenko N.S. 2020. Management of strategies of anticipatory innovative development. Sumy: Tritoria, pp. 109–118. [in Ukrainian]
  • 8. Laszlo O.O. 2014. Restoration of disturbed agricultural land with the help of bioremediation. Bulletin of the National University of Water Management and Nature Management, 1(65), 94–100. [in Ukrainian]
  • 9. Patsula O.I. Fetsyukh A.B. Bunyo L.V. 2018. Use of Salix viminalis L. for phytoremediation of soils contaminated with heavy metals. Environmental sciences, 2(20), 101–106. [in Ukrainian]
  • 10. Rakhmetov D.B. 2011. Theoretical and applied aspects of plant introduction in Ukraine. Kyiv: Agrar Media Group, pp. 398. [in Ukrainian]
  • 11. Romanchuk L.D., Kovalev V.B., Mozharivska I.A. 2021. Cultivation of giant miscanthus in conditions of radioactive contamination. Collection of works of the participants of the International Scientific and Practical Conference “Chernobyl Catastrophe. Actual problems, directions and ways to solve them” (April 22–23, 2021). Zhytomyr: University of Polissia, 68–73. [in Ukrainian]
  • 12. Samokhvalova V.L. 2014. Biological methods of remediation of soils contaminated with heavy metals. Biological Studies, 8(1), 217–236. [in Ukrainian]
  • 13. Skachok L.M., Potapenko L.V., Gorbachenko N.I. 2019. Agroecological efficiency of elements of miscanthus growing technology on radioactively contaminated soils. Visnyk Agrar. Science 9, 59–66. [in Ukrainian]
  • 14. Fedorchuk M.I., Kokovikhin S.V., Kalenska S.M. 2017. Agrotechnological aspects of growing energy crops in southern Ukraine. Kherson, 42–45. [in Ukrainian]
  • 15. Barbosa B., Boléo S., Sidella S., Costa J., Duarte M.P., Mendes B., Cosentino S.L., Fernando A.L. 2015. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Research, 8(4), 1500‒1511. doi: 10.1007/s12155-015-9688-9
  • 16. Basumatary B., Saikia R., Bordoloi S. 2012. Phytoremediation of crude oil-contaminated soil using nut grass Cyperus rotundus. Journal of Environmental Biology, 33(5), 891–896.
  • 17. Bellamy P.E., Croxton P.J., Heard M.S., Hinsley S.A., Hulmes L., Nuttall P., Pywell R.F., Rothery P. 2009. The impact of growing miscanthus for biomass on farmland bird populations. Biomass and Bioenergy, 33(2), 191–199. doi: 10.1016/j.biombioe.2008.07.001
  • 18. Boehmel C., Lewandowski I., Claupein W. 2008. Comparing annual and perennial energy cropping systems with different management intensities. Agricultural Systems, 96(1–3), 224–236. doi: 10.1016/j.agsy.2007.08.004
  • 19. de Abreu C.A., Coscione A.R., Pires A.M., Paz-Ferreiro J. 2012. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 123, 3–7. doi: 10.1016/j.gexplo.2012.04.013
  • 20. Gawronski S.W., Gawronska H., Lomnicki S., Sæbo A. 2017. Plants in Air Phytoremediation. Advances in Botanical Research, 83, 319–346. doi: 10.1016/bs.abr.2016.12.008
  • 21. Golets N.Y., Malʹovanyy M.S., Malyk Y.O. 2009. Investigation of the properties of the filtration screen of solid waste landfill. Bulletin of the National University “Lviv Polytechnic”, 644, 195–198.
  • 22. Kovalyova S., Mozharivska I. 2020. Heavy metal concentration in soils while growing energy crops in the radioactively contaminated territory. Scientific Horizons, 3(88), 121–126. doi: 10.33249/2663-2144-2020-88-3-121-126
  • 23. Meers E., van Slycken S., Adriaensen, K., Ruttens A., Vangronsveld J., Laing G.D., Witters N., Thewys T., Tack F.M.G. 2010. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere, 78(1), 35–41. doi: 10.1016/j.chemosphere.2009.08.015
  • 24. Meers E., Vandecasteele B., Ruttens A., Vangronsveld J., Tack F. M.G. 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60(1), 57–68. doi: 10.1016/j.envexpbot.2006.06.008
  • 25. Moubasher H.A., Hegazy A.K., Mohamed N.H., Moustafa Y.M., Kabiel H., Hamad A.A. 2015. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration and Biodegradation, 98, 113–120. doi: 10.1016/j.ibiod.2014.11.019
  • 26. Pandey V.C., Bajpai O., Singh N. 2016. Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58–73. doi: 10.1016/j.rser.2015.09.078
  • 27. Pandey V.C., Pandey D.N., Singh N. 2015. Sustainable phytoremediation based on naturally colonizing and economically valuable plants. Journal of Cleaner Production, 86, 37–39. doi: 10.1016/j.jclepro.2014.08.030
  • 28. Ridej N.M., Tonxa O.L., Shofolov D.L. 2009. Land protection and sustainable land use. Lugans`k: TOV PROGTEXSNAB.
  • 29. Romanchuk L.D. 2015. Radioekolohichna otsinka formuvannia dozovoho navantazhennia u meshkantsiv silskykh terytorii Polissia Ukrainy. Zhytomyr: Polissia.
  • 30. Rooney W.L., Blumenthal J., Bean B., Mullet J. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts, Biorefining, 1, 147–157. doi:10.1002/bbb.15
  • 31. Ryzhuk S.M., Sliusar I.T., Verhunov V.A. 2002. Agroecological features of highly effective use of drained peat soils in Polissia and Forest-Steppe. Kyiv: Agrarna Nauka.
  • 32. Smahlii O.F., Rybak M.F., Dankevych Y.M. 2008. Basics of agriculture. Zhytomyr: Publishing house of VDNZ “Derzh. agroecol. univ.
  • 33. Stephen D.G., Pete S., Marcelo G., Astley H., William P. 2014. Sustainable energy crop production. Current Opinion in Environmental Sustainability. 9–10, 20–25. doi: 10.1016/j.cosust.2014.07.007
  • 34. Vis M.W., van den Berg D. 2010. Biomass Energy Europe Harmonization of biomass resource assessments. Vol. I. Best Practices and Methods Handbook. Italy.
  • 35. Wanat N., Austruy, A., Joussein, E., Soubrand, M., Hitmi, A., Gauthier-Moussard, C., Lenain, J.F., Vernay P., Munch J.C., Pichon M. 2013. Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. Journal of Geochemical Exploration, 126‒127, 78‒84. doi: 10.1016/j.gexplo.2013.01.001
  • 36. Witters N., Mendelsohn R.O., Van Slycken S., Weyens N., Schreurs E., Meers E., Tack F., Carleer R., Vangronsveld J. 2012. Phytoremediation, a sustainable remediation technology? Conclusions from a case study. In: Energy production and carbon dioxide abatement. Biomass and Bioenergy, 39, 454–469. doi: 10.1016/j.biombioe.2011.08.016
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-97af19ec-1602-4dfa-a24f-ec918900964a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.