Warianty tytułu
Języki publikacji
Abstrakty
The thermo-optic coupling process of second harmonic generation was numerically simulated in ZnGeP2 crystals pumped by a pulsed CO2 laser at the wavelength of 9.6 mu m, under the strong and weak cooling conditions. The conversion efficiencies, temperature distributions were calculated during the evolution of the thermo-optic coupling. The results showed that the thermo-optic coupling was weak in the strong cooling condition, which nearly did not disturb the conversion processes and temperature distribution, while in the weak cooling case, the temperature distribution showed a great influence on the conversion efficiency and light intensity. Finally, it was found that compensation of the phase mismatch induced by the thermal effect can well recover the conversion efficiency.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
391--396
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, People’s Republic of China
autor
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, People’s Republic of China, gaoyachen@sina.com
autor
- Department of Optoelectric Information Science and Engineering, Harbin University of Science and Technology, Harbin 150080, People’s Republic of China
autor
- Department of Optoelectric Information Science and Engineering, Harbin University of Science and Technology, Harbin 150080, People’s Republic of China
autor
- Institute of Monitoring of Climatic and Ecological Systems SB RAS, Academicheskii Avenue, 10/3, Tomsk 634055, Russia
autor
- Bauman Moscow State Technical University, 5, 2nd Bauman Str., Moscow 105005, Russia
autor
- Institute of Monitoring of Climatic and Ecological Systems SB RAS, Academicheskii Avenue, 10/3, Tomsk 634055, Russia
Bibliografia
- [1] OKADA M., IEIRI S., IEEE J. Quantum Elect., 7 (1971), 464.
- [2] OKADA M., IEIRI S., IEEE J. Quantum Elect., 7 (1971), 560.
- [3] SHELDON S.J., KNIGHT L.V., THORNE J.M., Appl. Optics, 21 (1982), 1663.
- [4] DREGER M.A., MCIVER J.K., J. Opt. Soc. Am. B, 7 (1990), 776.
- [5] SEIDEL S., MANN G., Proc. SPIE, 2989 (1997), 204.
- [6] HUANG J.-J., WANG H., Acta Phys. Sin.-Ch. Ed., 59 (1020), 6235.
- [7] SABAEIAN M., MOUSAVE L., NADGARAN H., Opt. Express, 18 (2010), 18732.
- [8] CHAO Z.W., AN Y.H., Laser Phys. Lett., 11 (2014), 075402(1-6).
- [9] BARRY J.D., KENNEDY C.J., IEEE J. Quantum Elect., 11 (1975), 575.
- [10] HON D.T., IEEE J. Quantum Elect., 12 (1976), 148.
- [11] HON D.T., BRUESSELABACH H., IEEE J. Quantum Elect., 16 (1980), 1356.
- [12] BOYD G.D., BUEHLER E., STORZ F.G., Appl. Phys. Lett., 18 (1971), 301.
- [13] ANDREEV Y.M., VOEVODIN V.G., 11 (1984), 1511.
- [14] ANDREEV Y.M., VEROZUBOVA G.A., J. Korean Phys. Soc., 33 (1998), 356.
- [15] SCHUNEMANN P.G., POLLAK T.M., MRS Bull., 23 (1998), 23.
- [16] SCHUNEMANN P.G., SCHEPLER K.L., BUDNI P.A., MRS Bull., 23 (1998), 45.
- [17] IONIN A.A., KINYAEVSKIY I.O., SOLUYANOV A.V., Opt. Lett., 37 (2012), 2838.
- [18] HUANG J.J., HU X.Y., QU Y.CH., J. Opt. Soc. Am. B, 23 (2006), 1312.
- [19] NIKOGOSYAN D.N., Nonlinear Optical Crystals: A Complete Survey, Springer-Verlag, New York, 2005.
- [20] BENENSON W., HARRIS J.W., LUTZ H. (Eds.), Handbook of Physics, Springer-Verlag, New York, 2002, p. 752.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-97868a56-2b5b-4f4b-ac73-cee7c4ebff11