Czasopismo
2013
|
Vol. 46, nr 1
|
15--27
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The current paper represents a suplement for papers [7] and [8]. Many of the new summation formulae connecting Lucas numbers with binomials are presented here. All these relations are obtained by using definition and simple properties of the so called δ-Lucas numbers.
Czasopismo
Rocznik
Tom
Strony
15--27
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, roman.witula@polsl.pl
Bibliografia
- [1] A. T. Benjamin, J. J. Quin, Proofs That Really Count - the Art of Combinatorial Proof, Mathematical Association of America, 2003.
- [2] P. Filipponi, Some binomial and Fibonacci identities, Fibonacci Quart. 33(3) (1995), 251–257.
- [3] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing, 2006.
- [4] M. A. Khan, H. Kwong, Some binomial identities associated with the generalized natural number sequence, Fibonacci Quart. 49(1) (2011), 57–65.
- [5] T. Koshy, Fibonacci and Lucas Numbers with Application, Wiley, New York, 2001.
- [6] S. Vajda, Fibonacci and Lucas numbers and the Golden Section: Theory and Applications, Dover Press, 2008.
- [7] R. Wituła, Binomials transformation formulae of scaled Fibonacci numbers, Fibonacci Quart. (in review).
- [8] R. Wituła, D. Słota, δ-Fibonacci numbers, Appl. Anal. Discrete Math. 3 (2009), 310–329.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-977369bd-bff8-4b89-bb60-4418b65616b9