Warianty tytułu
Języki publikacji
Abstrakty
The precision forming of inner hole is one of technological bottlenecks in Cross-wedge Rolling (CWR) of hollow shaft with mandrel. The inner diameters show signs of characteristic fluctuation despite under the control of mandrel. The uniformity of inner diameter was investigated by finite element simulation and experiments in this study. The inner hole expands at the knifing stage and shrinks at the sizing stage. The dimensional fluctuation of inner diameter is mainly resulting from the improper metal flow. The radial and axial metal flows are insufficient at the knifing stage, which resulting in the hole expansion at knifing zone. The hole shrinkage is caused by the relatively adequate radial metal flow at sizing stage. The experiment results show that the hole expansion increases with the increasing stretching angle and mandrel diameter and decreases with the increasing forming angle and initial wall thickness. The hole expansion first increases and then decreases with the increasing reduction ratio. The hole shrinkage has positive correlations with forming angle, reduction ratio and initial wall thickness, and negatively correlates with stretching angle and relative mandrel diameter. A modified CWR roll with the curved-surface knife is proposed to get rid of the hole expansion. Based on experiments and simulations, the most suitable geometric parameters of the curved-surface knife are determined. Using mandrel diameter compensation can reduce the phenomenon of hole shrinkage. These methods were applied to the trial rolling of a half-shaft sleeve part, and the results show that the methods significantly restrain the inner diameter fluctuation.
Czasopismo
Rocznik
Tom
Strony
321--336
Opis fizyczny
Bibliogr. 23 poz., fot., rys., wykr.
Twórcy
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China, jingzhou@ustb.edu.cn
- Engineering Research Center of Part Rolling, Ministry of Education, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Engineering Research Center of Part Rolling, Ministry of Education, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
autor
- School of Mechanical Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
Bibliografia
- [1] Liang J, Ren G, Jia Z, Bai Z, Li D. Revolving conditions for cross rolling of hollow shafts. J Jilin Univ Technol. 1993;03:100–5. https:// doi. org/ 10. 13229/j. cnki. jdxbg xb1993. 03. 017 (In Chinese).
- [2] Zhang K, Liu J, Wang B, Hu Z. Analysis on stable rolling condition of hollow workpiece rolled by cross wedge rolling. J Univ Sci Technol Beijing. 2001;2:155–7. https:// doi. org/ 10. 3321/j. issn: 1001- 053X. 2001. 02. 017 (In Chinese).
- [3] Bartnicki J, Pater Z. The aspects of stability in cross-wedge rolling processes of hollowed shafts. J Mater Process Technol. 2004;155–156:1867–73. https:// doi. org/ 10. 1016/j. jmatp rotec. 2004. 04. 278.
- [4] Bartnicki J, Pater Z. Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft. J Mater Process Technol. 2005;164–165:1154–9. https:// doi. org/ 10. 1016/j. jmatp rotec. 2005. 02. 120.
- [5] Urankar S, Lovell M, Morrow C, Li Q, Kawada K. Establishment of failure conditions for the cross-wedge rolling of hollow shafts. J Mater Process Technol. 2006;177:545–9. https:// doi. org/ 10. 1016/j. jmatp rotec. 2006. 04. 052.
- [6] Urankar S, Lovell M, Morrow C, Li Q, Kawada K. Development of critical friction model for cross wedge rolling hollow shafts. J Mater Process Technol. 2006;177:539–44. https:// doi. org/ 10. 1016/j. jmatp rotec. 2006. 04. 048.
- [7] Neugebauer R, Kolbe M, Glass R. New warm forming processes to produce hollow shafts. J Mater Process Technol. 2001;119:277–82. https:// doi. org/ 10. 1016/ S0924- 0136(01) 00939-6.
- [8] Xu C, Ren G, Qiu Y. Cross wedge rolling for forming hollow part with equal inner diameter. Forg and Stamp Tech. 2005;30:51–5. https:// doi. org/ 10. 3969/j. issn. 1000- 3940. 2005. z1. 014 (In Chinese).
- [9] Huang X, Wang B, Lin J, Zhu C. Effect of mandrel diameter on non-circularity of hollow shafts in cross wedge rolling. Procedia Eng. 2017;207:2376–81. https:// doi. org/ 10. 1016/j. proeng. 2017. 10. 1011.
- [10] Huang X, Wang B, Mu Y, Shen J, Li J, Zhou J. Investigation on the effect of mandrels on hollow shafts in cross-wedge rolling. Int J Adv Manuf Tech. 2019;102:443–55. https:// doi. org/ 10. 1007/ s00170- 018- 3093-4.
- [11] Ji H, Liu J, Wang B, Zheng Z, Huang J, Hu Z. Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation. Int J Adv Manuf Tech. 2015;77:15–26. https:// doi. org/ 10. 1007/ s00170- 014- 6363-9.
- [12] Ji H, Liu J, Wang B, Tang X, Huo Y, Zhou J, Hu Z. Constitutive relationship of 4Cr9Si2 and technological parameters on the inner bore of cross wedge rolling for preform hollow valves. Int J Adv Manuf Tech. 2016;86:1–13. https:// doi. org/ 10. 1007/ s00170- 016- 8360-7.
- [13] Ji H, Liu J, Wang B, Fu X, Xiao W, Hu Z. A new method for manufacturing hollow valves via cross wedge rolling and forging: numerical analysis and experiment validation. J Mater Process Technol. 2017;240:1–11. https:// doi. org/ 10. 1016/j. jmatp rotec. 2016. 09. 004.
- [14] Yang C, Hu Z. Research on the ovality of hollow shafts in cross wedge rolling with mandrel. Int J Adv Manuf Tech. 2016;83:67–76. https:// doi. org/ 10. 1007/ s00170- 015- 7478-3.
- [15] Yang C, Ma J, Hu Z. Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. J Mater Process Technol. 2017;239:346–58. https:// doi. org/ 10. 1016/j. jmatp rotec. 2016. 09. 002.
- [16] Shen J, Wang B, Yang C, Zhou J, Cao X. Theoretical study and prediction of the inner hole reduction and critical mandrel diameter in cross wedge rolling of hollow shaft. J Mater Process Technol. 2021;294:117140. https:// doi. org/ 10. 1016/j. jmatp rotec. 2021. 117140.
- [17] Shen J, Wang B, Zhou J, Huang X, Li J. Numerical and experimental research on cross wedge rolling hollow shafts with a variable inner diameter. Arch Civ Mech Eng. 2019;4:1497–510. https:// doi. org/ 10. 1016/j. acme. 2019. 08. 003.
- [18] Shen J, Wang B, Zhou J, Lin L, Liu S, Feng P. Investigation on the inner hole spiral-groove of cross wedge rolling of hollow shafts with mandrel. Int J Adv Manuf Tech. 2020;110:1773–87. https:// doi. org/ 10. 1007/ s00170- 020- 05801-0.
- [19] Landgrebe D, Steger J, Bohmichen U, Bergmann M. Modified cross-wedge rolling for creating hollow shafts. Procedia Manuf. 2018;21:53–9. https:// doi. org/ 10. 1016/j. promfg. 2018. 02. 094.
- [20] Sun B, Zeng X, Shu X, Peng W, Sun P. Feasibility study on forming hollow axle with multi-wedge synchrostep by cross wedge rolling. Appl Mech Mater. 2012;201–202:673–7. https:// doi. org/ 10. 4028/ www. scien tific. net/ AMM. 201- 202. 673.
- [21] Peng W, Zheng S, Chiu Y, Shu X, Zhan L. Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft. Rare Metal Mater Eng. 2016;45(4):0836–42. https:// doi. org/ 10. 1016/ S1875- 5372(16) 30084-4.
- [22] Hu Z, Zhang K, Wang B, Zhang W. Theory and application of cross wedge rolling. Beijing: Metallurgical Industry Press; 1998.
- [23] Wang B, Hu F, Hu F, Hu Z. Experimental research on rolling radius of formed part for cross wedge rolling. J Mech Eng. 2010;46(24):22–7 (In Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9759564a-3826-4024-8fe8-44d731213fbe