Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 98, nr 4 | 72--76
Tytuł artykułu

Tapered plastic optical fiber loop coated with ZnO nanorods using multiple channels for relative humidity sensing

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Zwężająca się pętla światłowodowa z tworzywa sztucznego pokryta nanoprętami ZnO wykorzystująca wiele kanałów do wykrywania wilgotności względne
Języki publikacji
EN
Abstrakty
EN
To utilize the evanescent wave on a plastic optical fiber (POF), a humidity sensor was fabricated based on a tapered POF with a loop shape and coated with zinc oxide (ZnO) nanorods. The POF was tapered manually to a diameter of 0.90 mm by using the polishing method. ZnO nanorods were synthesized using the hydrothermal method. The obtained results revealed that the increase in the length of the tapered POF loop coated with ZnO nanorod had provided an excellent sensing performance as an RH sensor in terms of sensitivity and repeatability properties.
PL
Aby wykorzystać falę zanikającą na światłowodzie z tworzywa sztucznego (POF), wykonano czujnik wilgotności oparty na stożkowym POF w kształcie pętli i pokryty nanoprętami tlenku cynku (ZnO). POF zwężano ręcznie do średnicy 0,90 mm metodą polerowania. Nanopręty ZnO zsyntetyzowano metodą hydrotermalną. Uzyskane wyniki wykazały, że zwiększenie długości zwężającej się pętli POF pokrytej nanoprętem ZnO zapewniło doskonałe wyniki wykrywania jako czujnik wilgotności względnej pod względem czułości i właściwości powtarzalności.
Wydawca

Rocznik
Strony
72--76
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Dept of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTEM), izzakiysamm@gmail.com
  • Dept of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTEM), hanim@utem.edu.my
  • Dept of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTEM), hidayahazmii@gmail.com
  • Dept of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTEM), siti.halma@utem.edu.my
  • Dept of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTEM), mohd.hafiz@utem.edu.my
Bibliografia
  • [1] G. F. Lin Bo, Pengfei Wang, Yuliya Semenova, “Optical Microfiber Coupler Based Humidity Sensor with a Polyethylene Oxide Coating,” Microw. Opt. Technol. Lett., vol. 57, no. 3, pp. 457–460, 2014, doi: 10.1002/mop.
  • [2] M. Ndoye, I. Kerroum, D. Deslandes, and F. Domingue, “Airfilled substrate integrated cavity resonator for humidity sensing,” Sensors Actuators, B Chem., vol. 252, pp. 951–955, 2017, doi: 10.1016/j.snb.2017.06.101.
  • [3] D. Gomez, S. P. Morgan, B. R. Hayes-Gill, R. G. Correia, and S. Korposh, “Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment,” Sensors Actuators, B Chem., vol. 254, pp. 887–895, 2018, doi: 10.1016/j.snb.2017.07.191.
  • [4] L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensors Actuators, A Phys., vol. 190, pp. 1–5, 2013, doi: 10.1016/j.sna.2012.10.041.
  • [5] W. Chen, Z. Chen, Y. Zhang, H. Li, and Y. Lian, “Agarose coated macro-bend fiber sensor for relative humidity and temperature measurement at 2 μm,” Opt. Fiber Technol., vol. 50, no. December 2018, pp. 118–124, 2019, doi: 10.1016/j.yofte.2019.03.007.
  • [6] Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small, vol. 14, no. 29, pp. 1–20, 2018, doi: 10.1002/smll.201800524.
  • [7] A. Nikołajew, “Bandwidth of multimode step-index optical fibre in dependence on its parameters,” Prz. Elektrotechniczny, vol. 88, no. 8, pp. 66–67, 2012.
  • [8] P. Kisała, “Detection of material defects with indirect metod by determining the linear expansion with FBG sensor,” PrzeglądElektrotechniczny, vol. R. 89, nr 1a, no. 1, pp. 29–33, 2013.
  • [9] G. B. Kashaganova, P. Komada, and G. Karnakova, “Fiber sensors based on the Bragg gratings in security systems,” Prz. Elektrotechniczny, vol. 96, no. 9, pp. 120–122, 2020, doi: 10.15199/48.2020.09.25.
  • [10] N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Meas. J. Int. Meas. Confed., vol. 99, pp. 128–133, 2017, doi: 10.1016/j.measurement.2016.12.021.
  • [11] M. H. Jali et al., “Optical characterization of different waist diameter on microfiber loop resonator humidity sensor,” Sensors Actuators, A Phys., vol. 285, pp. 200–209, 2019, doi: 10.1016/j.sna.2018.11.025.
  • [12] L. Shi and X. Chen, “Simulation of optical microfiber loopresonators for biochemical sensing,” p. 8, 2006, [Online]. Available: http://arxiv.org/abs/physics/0611301.
  • [13] M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett., vol. 86, no. 16, pp. 1–3, 2005, doi: 10.1063/1.1906317.
  • [14] S. W. Harun, K. S. Lim, S. S. A. Damanhuri, and H. Ahmad, “Microfiber loop resonator based temperature sensor,” J. Eur. Opt. Soc., vol. 6, p. 35, 2011, doi: 10.2971/jeos.2011.11026.
  • [15] C. Lei, Shi; Yonghao, Xu; Wei, Tan; Xianfeng, “Simulation of Optical Microfiber Loop Resonators for Ambient Refractive Index Sensing,” Sensors, vol. 7, pp. 689–696, 2007.
  • [16] M. Batumalay, S. W. Harun, F. Ahmad, R. M. Nor, N. R. Zulkepely, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J., vol. 14, no. 5, pp. 1704–1709, 2014, doi: 10.1109/JSEN.2014.2302900.
  • [17] M. Q. Lokman, H. R. Bin Abdul Rahim, S. W. Harun, G. L. Hornyak, and W. S. Mohammed, “Light backscattering (e.g. reflectance) by ZnO nanorods on tips of plastic optical fibres with application for humidity and alcohol vapour sensing,” Micro Nano Lett., vol. 11, no. 12, pp. 832–836, 2016, doi: 10.1049/mnl.2016.0321.
  • [18] M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express, vol. 20, no. 8, p. 8472, 2012, doi: 10.1364/oe.20.008472.
  • [19] A. Kolodziejczak-Radzimska and T. Jesionowski, “Zinc oxidefrom synthesis to application: A review,” Materials (Basel)., vol. 7, no. 4, pp. 2833–2881, 2014, doi: 10.3390/ma7042833.
  • [20] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang,“ZnO nanorod gas sensor for ethanol detection,” Sensors Actuators, B Chem., vol. 162, no. 1, pp. 237–243, 2012, doi: 10.1016/j.snb.2011.12.073.
  • [21] H. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta, “Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber,” Opt. Lett., vol. 38, no. 18, p. 3620, 2013, doi: 10.1364/ol.38.003620.
  • [22] B. Mizaikoff, “Mid-IR Fiber-Optic,” Anal. Bioanal. Chem., pp. 258–267, 2003.
  • [23] M. H. Jali et al., “Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber,” Opt. Laser Technol., vol. 120, no. August, pp. 1–9, 2019, doi: 10.1016/j.optlastec.2019.105750.
  • [24] Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, and J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express, vol. 19, no. 15, p. 14217, 2011, doi: 10.1364/oe.19.014217.
  • [25] H. Parangusan, J. Bhadra, Z. Ahmad, S. Mallick, F. Touati, and N. Al-Thani, “Capacitive type humidity sensor based on PANI decorated Cu–ZnS porous microspheres,” Talanta, vol. 219, p. 121361, 2020, doi: 10.1016/j.talanta.2020.121361.
  • [26] S. Arunachalam, R. Izquierdo, and F. Nabki, “Low-hysteresis and fast response time humidity sensors using suspended functionalized carbon nanotubes,” Sensors (Switzerland), vol. 19, no. 3, 2019, doi: 10.3390/s19030680.
  • [27] S. Azad, E. Sadeghi, R. Parvizi, A. Mazaheri, and M. Yousefi, “Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter,” Opt. Laser Technol., vol. 90, no. November 2016, pp. 96–101, 2017, doi: 10.1016/j.optlastec.2016.11.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9747aeec-0b3b-423b-bbb8-b431fa6508c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.