Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 46, no. 3 | 92--98
Tytuł artykułu

A study on aerobic lipid substrate elimination by microbial consortium

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to validate the applicability of specialized microbial consortium for the degradation of lipids in wastewater. An experimental model of the process is proposed that enables prediction of the required batch length. This model can be used for supervision of the process and to control cycles of the batch reactor. The study involved 4 reactors with microbial consortium obtained by inoculation from a commercially available biopreparate. Each reactor was fed a different load of lipid containing substrate. The biodiversity, settling characteristics and COD reductions were measured. The biodiversity of the microbial consortium changed within a range of ±15% depending on lipids concentration, as shown by the Shannon index and increasing amount of β-proteobacteria. Higher concentrations of lipids increased the biodiversity suggesting higher growth of microorganisms capable of utilizing lipids as energy and carbon source by producing lipid hydrolyzing enzymes. High lipid concentrations degrade the settling capabilities of the biomass. Higher lipid concentrations (0.5–2.0 [g/l]) increase the final COD (1445–2160 [mg O2/l]). The time necessary for substrate degradation changes with the initial concentration and can be predicted using the proposed model. The study showed that specialized microbial consortium is capable of reducing the lipids containing substrate and maintains its biodiversity suggesting that utilization of such consortia in multiple cycles of a batch reactor is possible. Future research should concentrate on assessing the biodiversity and effectiveness of substrate reduction after an increased number of batch reactor cycles.
Wydawca

Rocznik
Strony
92--98
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Gliwice, Poland
  • Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Alade, T.J., Suleyman, A.M., Abdul Karim, M.L. & Alam, M.Z. (2011). Removal of oil and grease as Emerging Pollutants of Concern (EPC) in wastewater stream. IIUM Engineering Journal 12, 4, pp. 161-169, DOI: 10.31436/iiumej.v12i4.218.
  • 2. Becker, P., Koster, D., Popov, M.N., Markossian, S., Antranikian, G. & Markl, H. (1999). The biodegradation of olive oil and treatment of lipid-rich wool wastewater under aerobic thermophilic condition. Water Research, 33, pp. 653-660, DOI: doi.org/10.1016/S0043-1354(98)00253-X.
  • 3. Brooksband, A.M., Latchford, J.W. & Mudge, S.M. (2007). Degradation and modification of fats, oils and grease by commercial microbial supplements. World J. Microbiol. Biotechnol, 23, pp. 977-985, DOI: 10.1007/s11274-006-9323-1.
  • 4. Cheremisinoff, N.P. (2002). Handbook of Water and Wastewater Treatment Technologies. Butterworth-Heinemann, Boston.
  • 5. Daims, H., Stoeckr, K. & Wagner, M. (2005). Fluorescence In Situ Hybridisation for the Detection of Prokaryotes. In Advanced Methods in Molecular Ecology. BIOS Scientific Publishers, Abingdon, UK. pp. 213-239.
  • 6. Eichner, C.A., Erb, R.W., Timmis, K.N. & Wagner-Döbler, I. (1999). Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shock in the activated sludge microbial community. Applied Environmental Microbiology, 65, pp. 102-109.
  • 7. Facchin, S., Alves, P.D.D., de Faria, S.F., Tatiana, M.B., Júnia, M.N.V. & Evanguedes, K. (2013). Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Journal of Ecology, 3(1), pp. 34-47, DOI: 10.4236/oje.2013.31005.
  • 8. Fujihira, T., Seo, S., Yamaguchi, T., Hatamoto, M. & Tanikawa, D. (2018). High-rate anaerobic treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery. Bioresource Technology, 263, pp. 145-152, DOI: 10.1016/j.biortech.2018.04.091.
  • 9. Herrero, M. & Stuckey, D.C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, pp. 119-128, DOI: 10.1016/j.chemosphere.2014.10.033.
  • 10. Jałowiecki, Ł., Płaza, G., Ejhed, H. & Nawrotek, M. (2019). Aerobic biodegradation of norfloxacin and ofloxacin by microbial consortium. Archives of Environmental Protection, 45 (4), pp. 40-47, DOI: 10.24425/aep.2019.130240.
  • 11. Luxmy, B.S., Nakajima, F. & Yamamoto, K. (2000). Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturating gradient gel electrophoresis (DGGE) techniques. Water Science and Technology, 41, pp. 259-268, DOI: doi.org/10.2166/wst.2000.0657.
  • 12. Martins, A.M.P., Pagilla, K., Heijnen, J.J. & van Loosdrecht M.C.M. (2004). Filamentous bulking sludge - a critical review. Water Research, 38, pp. 793-817, DOI: doi.org/10.1016/j.watres.2003.11.005.
  • 13. Muyzer G., De Waal E.C. & Uitterlinden A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, pp. 695-700.
  • 14. Ning, Z., Zhang, H., Li, W., Zhang, R., Liu, G. & Chen, C. (2018). Anaerobic digestion of lipid-rich swine slaughterhouse waste: Methaneproduction performance, long-chain fatty acids profile and predominant microorganisms. Bioresource Technology, 269, pp. 426-433, DOI: doi.org/10.1016/j.biortech.2018.08.001.
  • 15. Moysa-Łobos, E. (2018). The application of ultrasounds in oily wastewater pre-treatment. Archives of Environmental Protection, 44, pp. 24-32, DOI: 10.24425/118178.
  • 16. Saifuddin, N. & Chua, K.H. (2006). Biodegradation of lipid-rich wastewater by combination of microwave irradiation and lipase immobilized on chitosan. Biotechnology, 5, pp. 315-323, DOI: 10.3923/biotech.2006.315.323.
  • 17. Shannon, C.E. & Weaver, W. (1963). The mathematical theory of communication. Univ. Illinois Press, Urbana.
  • 18. Willey, R. (2001). Fats, oils, and greases: the minimization and treatment of wastewaters generated from oil refining and margarine production. Ecotoxicology and Environmental Safety, 50, 127-133, DOI: 10.1006/eesa.2001.2081
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-97209085-0497-4957-96bd-ea7d51a9c92e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.