Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 4 | 791--804
Tytuł artykułu

Hopfian and co-hopfian subsemigroups and extensions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the preservation of hopficity and co-hopficity on passing to finite-index subsemigroups and extensions. It was already known that hopficity is not preserved on passing to finite Rees index subsemigroups, even in the finitely generated case. We give a stronger example to show that it is not preserved even in the finitely presented case. It was also known that hopficity is not preserved in general on passing to finite Rees index extensions, but that it is preserved in the finitely generated case. We show that, in contrast, hopficity is not preserved on passing to finite Green index extensions, even within the class of finitely presented semigroups. Turning to co-hopficity, we prove that within the class of finitely generated semigroups, co-hopficity is preserved on passing to finite Rees index extensions, but is not preserved on passing to finite Rees index subsemigroups, even in the finitely presented case. Finally, by linking co-hopficity for graphs to co-hopficity for semigroups, we show that without the hypothesis of finite generation, co-hopficity is not preserved on passing to finite Rees index extensions.
Wydawca

Rocznik
Strony
791--804
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Centro De Matemática Faculdade De Ciências Universidade Do Porto Rua Do Campo Alegre 687 4169–007 Porto, Portugal, ajcain@fc.up.pt
autor
Bibliografia
  • [1] S. I. Adjan, Defining relations and algorithmic problems for groups and semigroups, Trudy Mat. Inst. Steklov. 85 (1966), 123.
  • [2] G. Baumslag, D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201. doi:10.1090/S0002-9904-1962-10745-9
  • [3] R. V. Book, F. Otto, String-Rewriting Systems, Texts and Monographs in Computer Science, Springer-Verlag, New York, 1993.
  • [4] A. J. Cain, R. Gray, N. Ruškuc, Green index in semigroup theory: generators, presentations, and automatic structures, Semigroup Forum 85(3) (2012), 448–476. doi:10.1007/s00233-012-9406-2
  • [5] A. J. Cain, V. Maltcev, For a few elements more: A survey of finite Rees index. arXiv:1307.8259
  • [6] R. Gray, N. Ruškuc, Green index and finiteness conditions for semigroups, J. Algebra 320(8) (2008), 3145–3164. doi:10.1016/j.jalgebra.2008.07.008
  • [7] R. Hirshon, Some theorems on hopficity, Trans. Amer. Math. Soc. 141 (1969), 229–244. doi:S0002-9947-1969-0258939-3
  • [8] H. Hopf, Beiträge zur klassifizierung der flächenabbildungen, J. Reine. Angew. Math. 165 (1931), 225–236. doi:10.1515/crll.1931.165.225
  • [9] J. M. Howie, Fundamentals of Semigroup Theory, volume 12 of London Mathematical Society Monographs (New Series), Clarendon Press, Oxford University Press, New York, 1995.
  • [10] J. M. Howie, N. Ruškuc, Constructions and presentations for monoids, Comm. Algebra 22(15) (1994), 6209–6224. doi:10.1080/00927879408825184
  • [11] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Volume 89 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1977.
  • [12] V. Maltcev, Topics in Combinatorial Semigroup Theory, Ph.D. Thesis, University of St Andrews, 2012. URL: hdl.handle.net/10023/3226
  • [13] V. Maltcev, N. Ruškuc, On hopfian cofinite subsemigroups, 2012. Submitted. arXiv:1307.6929
  • [14] B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. URL:www.jstor.org/stable/91573
  • [15] N. Ruškuc, On large subsemigroups and finiteness conditions of semigroups, Proc. London Math. Soc. (3) 76(2) (1998), 383–405. doi:10.1112/S0024611598000124
  • [16] J. Wang, Finite complete rewriting systems and finite derivation type for small extensions of monoids, J. Algebra 204(2) (1998), 493–503. doi:10.1006/jabr.1997.7388
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-96a5836b-2bb0-4650-8805-1b9844c052f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.