Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, no. 3 | 902--913
Tytuł artykułu

Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental investigation was conducted on 30 CFST columns. An influence of the following factors on load-carrying capacity of the investigated columns was analyzed: the column slenderness (λ1 = 42, λ2 = 27 and λ3 = 15), the tube thickness (the reinforcement ratio was equal to 4% or 6%), the way of applying the load to CFST columns (through the concrete core or through the entire cross-section), the bond strength between a steel tube and a concrete core. The results of the experimental investigation let the author derive a practical method of determining load-bearing capacity of CFST columns. The Eurocode 4 provisions regulating composite steel and concrete structures design impose the minimum share of a steel tube in the cross-sectional area of a CFST column. This minimum share is the prerequisite for the Eurocode 4 to be applicable. It ranges from 0.5% to 6%. As the experimental research presented in the paper indicate, the CFST columns of such low reinforcement ratios can be also effective in carrying loads. The proposed method is a second order analysis based on stiffness, similarly as the calculation procedure for the ordinary reinforced concrete columns which is used in Eurocode 2. The experimental results prove the author's suggestion to be correct.
Wydawca

Rocznik
Strony
902--913
Opis fizyczny
Bibliogr. 19 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland, marcin.abramski@pg.edu.pl
Bibliografia
  • [1] M. Ahmadi, H. Naderpour, A. Kheyroddin, Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load, Arch. Civ. Mech. Eng. (2014), http://dx.doi.org/10.1016/j.acme.2014.01.006.
  • [2] ENV 1994-1-1: 1992, Eurocode 4. Design of Composite Steel and Concrete Structures. General Rules and Rules for Buildings, 1992.
  • [3] K.M. Shrestha, B. Chen, Y. Chen, State of the art of creep of concrete filled steel tubular arches, KSCE J. Civ. Eng. (2011) 145–151. http://dx.doi.org/10.1007/s12205-011-0734-7.
  • [4] C. Liu, Y. Wang, W. Wang, W. Xinrong, Seismic performance and collapse prevention of concrete-filled thin-walled steel tubular arches, Thin-Walled Struct. 80 (2014) 91–102.
  • [5] G. Yan, Composite arch bridges developed in China, Compos. Constr. Conv. Innov. (Innsbruck) (1997).
  • [6] EN 1994-1-1, Eurocode 4: Design of Composite Steel and Concrete Structures – Part 1-1: General Rules and Rules for Buildings, 2009.
  • [7] EN 1992-1-1, Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings, 2010.
  • [8] M. Abramski, T. Friedrich, W. Kurz, J. Schnell, Innovative shear connectors for a new prestressed composite slab system for buildings with multiple HVACR installations, in: R.T. Leon, T. Perea, G.A. Rassati, J. Lange (Eds.), VI Int. Eng. Conf. Composite Constr. Steel Concr., American Society of Civil Engineers, Devil's Thumb Ranch, Tabernash, Colorado, United States, 2011, 102–111, doi:10.1061/41142(396)9.
  • [9] M. Abramski, W. Kurz, J. Schnell, Experimental investigations on unconventional shear connection between steel web and concrete slab in composite beams (in Polish), Inżynieria I Bud. 67 (2011) 109–112.
  • [10] A.E. Kilpatrick, B.V. Rangan, Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns, ACI Struct. J. 96 (1999) 642–648. http://dx.doi.org/ 10.14359/702.
  • [11] A. Fam, F. Qie, S. Rizkalla, Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads, J. Struct. Eng. ASCE 130 (2004) 631–640.
  • [12] M.H. Mollazadeh, Y.C. Wang, New mechanism of load introduction into concrete-filled steel tubular columns, J. Struct. Eng. ASCE 142 (2016).
  • [13] Z. Tao, T.-Y. Song, B. Uy, L.-H. Han, Bond behavior in concrete-filled steel tubes, J. Constr. Steel Res. (2016), http:// dx.doi.org/10.1016/j.jcsr.2015.12.030.
  • [14] B. Xu, T. Zhang, G. Song, H. Gu, Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis, Mech. Syst. Signal Process. 36 (2013) 7–17. , http://dx.doi.org/10.1016/j. ymssp.2011.07.029.
  • [15] M. Abramski, Experimental Investigations on the Properties of the Axially Loaded CFST Columns, Ph.D. thesis, Gdansk University of Technology, 2006 (in Polish).
  • [16] M. Król, W. Tur, Expanding Concrete, Arkady, Warsaw, Poland, 1999 (in Polish).
  • [17] C.W. Roeder, B. Cameron, C.B. Brown, Composite action in concrete filled tubes, J. Struct. Eng. (1999).
  • [18] PN-B-03264:2002, Concrete, Reinforced Concrete and Prestressed Concrete Structures. Static Calculation and Design, 2002 (in Polish).
  • [19] P. Korzeniowski, Confined Columns in the Tests and Theory, Gdansk University of Technology, Gdansk, 2000 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9633854a-14b2-4473-a6b3-20e9c29432d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.