Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 25, No. 4 | art. no. 2024412
Tytuł artykułu

Detection and classification of air gap eccentricity fault in induction machine using artificial intelligence techniques

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper employs artificial intelligence to diagnose induction machine health by detecting air gap eccentricity under varied conditions. It addresses Model-Based Method and conventional MCSA techniques limitations, requiring extensive model knowledge. The proposed technique relies on stator current signals, simplifying data acquisition. Using Root Mean Square and raw data using the three phases of stator current from a multi winding model of a squirrel cage induction machine. The study emphasizes on employing classification and regression tasks for supervised learning as a non-model-based approach by applying several models and classifiers to choose the best one for the monitoring task. This approach allows online diagnosis, detecting defects early, even under weak load conditions by conduction a multiclassification technique for each class of the dataset. The paper's strength lies in its holistic analysis of signal fluctuations, categorizing faults based on nature and location. Overall, the proposed algorithm for the classification which is Decision Trees achieved an overall accuracy surpassing 80% against other classifiers, and for the regression task Random Forest outperformed by delivering the least values of loss error with 0.014 using mean square error evaluation metric and achieving a 98.6% accuracy.
Wydawca

Czasopismo
Rocznik
Strony
art. no. 2024412
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Electrical Engineering Department, Electrical Engineering Laboratory of Biskra (LGEB) University of Biskra, P.O Box 145, 07000, Biskra, Algeria, moutazbellah.bentrad@univ-biskra.dz
  • Electrical Engineering Department, Electrical Engineering Laboratory of Biskra (LGEB) University of Biskra, P.O Box 145, 07000, Biskra, Algeria, a.ghoggal@univ-biskra.dz
autor
  • Electrical Engineering Department, Laboratory of Automation and Signals of Annaba (LASA) Badji Mokhtar-Annaba University,P.O Box.12, Annaba, 23000 Algeria, tbahi@hotmail.fr
Bibliografia
  • 1. Glowacz A, Glowacz Z. Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics & Technology 2017;81:7-16. https://doi.org/10.1016/j.infrared.2016.12.003.
  • 2. Hegde V, Maruthi GS. Experimental investigation on detection of air gap eccentricity in induction motors by current and vibration signature analysis using noninvasive sensors. Energy Procedia 2012;14:1047-52. https://doi.org/10.1016/j.egypro.2011.12.1053.
  • 3. Subotic I, Dordevic O, Gomm JB, Levi E. Active and reactive power sharing between three-phase winding sets of a multiphase induction machine. IEEE Transactions on Energy Conversion 2019;34(3): 1401-10. https://doi.org/10.1109/TEC.2019.2898545.
  • 4. Chuan H, Gan L. Investigation of the power losses in induction machines with rotor eccentricity. Electrical Engineering 2020; 102: 1-11. https://doi.org/10.1007/s00202-020-00957-0.
  • 5. Khireddine MS, Slimane N, Abdessemed Y, Makhloufi MT. Fault detection and diagnosis in induction motor using artificial intelligence technique. MATEC Web of Conferences 2014;16. https://doi.org/10.1051/matecconf/20141610004.
  • 6. Pradhan S, Bhowmik PS, Prakash M. Fault diagnostic and monitoring methods of induction motor: a review. International Journal of Applied Control, Electrical and Electronics Engineering 2013; 1: 1-18.
  • 7. Ojaghi M, Mohammadi M. Unified modeling technique for axially uniform and nonuniform eccentricity faults in three-phase squirrel cage induction motors. IEEE Transactions on Industrial Electronics 2018; 65(7): 5292-301. https://doi.org/10.1109/TIE.2017.2760280.
  • 8. Lee IS. Fault diagnosis of induction motors using discrete wavelet transform and artificial neural network. 2011; 173: 510-4. https://doi.org/10.1007/978-3-642-22098-2_102.
  • 9. Ayhan B, Chow MY, Song MH. Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors. Industrial Electronics, IEEE Transactions on 2006;53:1298-308. https://doi.org/10.1109/TIE.2006.878301.
  • 10. Senthil Kumar R, Gerald Christopher Raj I. Broken rotor bar fault detection using DWT and energy eigenvalue for DTC fed induction motor drive. International Journal of Electronics 2021;108(8): 1401-25. https://doi.org/10.1080/00207217.2020.1870727.
  • 11. Abd-El-Malek M, Abdelsalam A, E. Hassan O. Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing 2017;93:332-50. https://doi.org/10.1016/j.ymssp.2017.02.014.
  • 12. Rivera-Guillen JR, De Santiago-Perez JJ, AmezquitaSanchez JP, Valtierra-Rodriguez M, RomeroTroncoso RJ. Enhanced FFT-based method for incipient broken rotor bar detection in induction motors during the startup transient. Measurement 2018;124:277-85. https://doi.org/10.1016/j.measurement.2018.04.039.
  • 13. Pineda-Sanchez M, Puche-Panadero R, Riera-Guasp M, Perez-Cruz J, Roger-Folch J, Pons-Llinares J. Application of the teager–kaiser energy operator to the fault diagnosis of induction motors, 2013.
  • 14. Ben Salem S, Salah M, Bacha K, Chaari A. Experimental investigation of the eccentricity impact on the line current spectrum for induction motors fault diagnosis purposes. 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) 2016: 205-10. https://doi.org/10.1109/STA.2016.7952070.
  • 15. Reda R, Fayçal A, Tahar B. Fault eccentricity diagnosis in variable speed induction motor drive using DWT. Advances in Modelling and Analysis C 2017;72(3):181-202. https://doi.org/10.18280/ama_c.720301.
  • 16. Al Tobi MAS, K P R, Al-Araimi S, Pacturan R, Rajakannu A, Achuthan G. Machinery fault diagnosis using continuous wavelet transform and artificial intelligence based classification. 2022 The 3rd International Conference on Robotics Systems and Vehicle Technology (RSVT) 2022:51-9. https://doi.org/10.1145/3560453.3560463.
  • 17. Chouidira I, Khodja DE, Chakroune S. Induction machine faults detection and localization by neural networks methods. Revue d'Intelligence Artificielle 2019; 33(6): 427-434. https://doi.org/10.18280/ria.330604.
  • 18. Saucedo-Dorantes JJ, Zamudio-Ramirez I, CurenoOsornio J, Osornio-Rios RA, Antonino-Daviu JA. Condition monitoring method for the detection of fault graduality in outer race bearing based on vibrationcurrent fusion, statistical features and neural network. Applied Sciences 2021;11(17):8033. https://doi.org/10.3390/app11178033.
  • 19. Heming L, Liling S, Boqiang X. Research on transient behaviors and detection methods of stator winding inter-turn short circuit fault in induction motors based on multi-loop mathematical model. Proceeding of IEEE ICEMS 2005;3:1951-1955.
  • 20. Luo X, Liao Y, Toliyat H, El-Antably A, Lipo TA. Multiple coupled circuit modeling of induction machines. 1993;31:203-10. https://doi.org/10.1109/IAS.1993.298925.
  • 21. Razik H, Didier G. Notes de cours sur le diagnostic de la machine asynchrone. Notes de cours, I.U.F.M. de Lorraine, Maxeville, 7 Janvier 2003.
  • 22. Yassa N, Rachek M, Houssin H. Motor current signature analysis for the air gap eccentricity detection in the squirrel cage induction machines. Energy Procedia 2019;162:251-262.
  • 23. Pelvig DP, Pakkenberg H, Stark A, Pakkenberg B. Neocortical glial cell numbers in human brain. Neurobiology of aging 2007;29:1754-62. https://doi.org/10.1016/j.neurobiolaging.2007.04.013.
  • 24. Laudani A, Lozito GM, Riganti Fulginei F, Salvini A. On training efficiency and computational costs of a feed forward neural network: A review. Computational Intelligence and Neuroscience 2015; 2015(1):818243. https://doi.org/10.1155/2015/818243.
  • 25. Gentili PL, Gotoda H, Dolnik M, Epstein I. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor. Chaos (Woodbury, N.Y.) 2015;25:013104. https://doi.org/10.1063/1.4905458.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-960e3434-59eb-4270-8bf3-4e087adf9bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.