Czasopismo
2023
|
Vol. 16, no. 2
|
189--200
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The selection of appropriate technological processes for water treatment has a key impact on the qualitative safety of water intended for human consumption. The article analyzes water treatment processes used in a selected Water Treatment Plant (WTP) in terms of surface and ground water treatment. Five-year results of the research are presented on selected physico-chemical and bacteriological parameters of water quality before treatment processes, after individual stages of treatment (settling tanks, DynaSand® filters, ozonation, carbon filters, UV rays and chlorine gas disinfection). The reduction of key pollutants at individual stages of technological processes was calculated. The results of the analyzes demonstrated that the technological processes used in WTP effectively remove turbidity, color, UVA254nm, permanganatate oxygen demand, Fetotal, Mn, coliform bacteria, Enterococcus faecalis and Clostridium Perfringens from the surface and underground water. Studies have shown that infiltration in the ground effectively removes selected pollutants from water and its effectiveness is comparable to high-efficiency treatment processes.
Czasopismo
Rocznik
Tom
Strony
189--200
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- PhD Eng.; Sądeckie Wodociągi L.L.C., Wincentego Pola 22, 33-300 Nowy Sącz, Poland, imwiewiorska@gmail.com
Bibliografia
- [1] Ribeiro, A. R., Nunes, O. C., Manuel, M. R. F. & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33–51.
- [2] Teodosiu, C., Gilca, A.-F., Barjovenau, G. & Fiore, S. (2018). Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. Journal of Cleaner Production, 197, 1210–1221.
- [3] Bhatnagar, A. & Sillanpää, M. (2017). Removal of natural organic matter (NOM) and its constituents from water by adsorption – a review. Chemosphere, 166, 497–510.
- [4] Nawrocki, J. (2010). Water Treatment Physical, chemical and biological processes. Warsaw: Scientific Publish AMU, Scientific Publish, PWN, Vol. 1.
- [5] Sillanpää, M., Ncibi, M. C., Matilainen, A. & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54–71.
- [6] Mallya, D. S., Abdikheibari, S., Dumée, L. F., Muthukumaran, S., Lei, W. & Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere, 321, 138070.
- [7] Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci, 59(2), 89–97.
- [8] Boogaert, I., Katsou, E., Ahmad, B., Ghazal, H., Simons, S., Wrobel, L. & Jouhara, H. (2018). Surface water filtration using granular media and membranes: a review. Science of the Total Environment, 639, 1268–1282.
- [9] Bolto, B., Dixo, D., Eldridge, R. & King, S. (2001). Cationic polymer and clay or metal oxide combinations for natural organic matter removal. Water Research, 35(11), 2669–2676.
- [10] Ding, Ch. & Schang, Ch. (2010). Mechanisms controlling adsorption of natural organic matter on surfactant - modified iron oxide-coated sand. Water Research, 44(12), 3651–3658.
- [11] Gan, X., Karanfil, T., Bekaroglu, S. S. K. & Shan, J. (2013). The control of N-DBP and C-DBP precursors with MIEX®. Water Research, 47(3), 1344–1352.
- [12] Tian, J., Liang, H., Li X., You, S., Tian, S. & Li, G. (2008). Membrane coagulation bioreactor (MCBR) for drinking water treatment. Water Research, 42(14), 3910–3920.
- [13] Sun, F., Wang, F., Jiang, H., Huang, Q., Xu, Ch., Yu, P. &Cong, H. (2022). Analysis on the flocculation characteristics of algal organic matters. Journal of Environmental Management, 302, Part B, 114094.
- [14] Sun, F., Hu, W., Pei, H., Li, X., Xu, X., Ma & Ch. (2015). Evaluation on the dewatering process of cyanobacteria-containing AlCl3 and PACl drinking water sludge. Separation and Purification Technology, 150, 52–62.
- [15] Ciuła, J. (2022). Analysis of the effectiveness of wastewater treatment in activated sludge technology with biomass recirculation. Architecture Civil Engineering Environment, 15(2), 123–134.
- [16] Wiewiórska, I. & Rybicki, S. M. (2022). Analysis of a coagulation sludge contamination with metals using X-ray crystallography. Desalination Water Treatment, 254, 151–159.
- [17] Ciuła, J., Generowicz, A., Gaska, K. & Gronba-Chyła, A. (2022). Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study. Journal of Ecological Engineering, 23, 143–156.
- [18] Ciuła, J., Kowalski, S. & Wiewiórska, I. (2023). Pollution Indicator of a Megawatt Hour Produced in Cogeneration – The Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants. Journal Ecological Engineering, 24(3), 232–245.
- [19] Jiang, J.-Q. (2015). The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36–44.
- [20] Rizzo, L. (2014). The Contribution of the Coagulation Process in Controlling Microbial Risk and Disinfection by-products Formation in Drinking Water. The Role of Colloidal Systems in Environmental Protection, 219–238.
- [21] Kowal, L. & Świderska, Bróż, M. (2007). Oczyszczanie wody. Podstawy teoretyczne i technologiczne, procesy i urządzenia. (Water treatment. Theoretical and technological foundations, processes and devices) Wydawnictwo Naukowe PWN, Warszawa 2007.
- [22] Regulation of the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. Dz.U. 2017 poz. 2294. [access on 05/03/2023]. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20170002294/O/D20172294.pdf.
- [23] Wysowska, E., Wiewiórska, I. & Kicińska, A. (2022). Minerals in tap water and bottled waters and their impact on human health. Desalination and Water Treatment, 259, 133–151.
- [24] Yu, J., Wang D., Yan, M., Ye, C., Yang, M. &Ge, X. (2007). Optimized Coagulation of High Alkalinity, Low Temperature and Particle Water: pH Adjustment and Polyelectrolytes as Coagulant Aids. Environmental Monitoring and Assessment, 131, 377–386.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-96058e3f-43f0-4e2d-89c7-e5466319da40