Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, nr 5 | art. no. e150807
Tytuł artykułu

Selected aspects of the operation of dual active bridge DC/DC converters

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review paper discusses the concept of a bidirectional dual active bridge (DAB) DC/DC converter. Practical applications and control methods are explored, and various types of DAB converters are introduced and characterized. Aspects of operation are discussed, and enriched by the results of theoretical analyses, simulations, and experimental measurements of the original authors’ work.
Wydawca

Rocznik
Strony
art. no. e150807
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Department of Power Electronics and Electrical Machines, Poland
  • Warsaw University of Technology, Institute of Control and Industrial Electronics, Poland
Bibliografia
  • [1] M. Fotopoulou, D. Rakopoulos, D. Trigkas, F. Stergiopoulos, O. Blanas, and S. Voutetakis, “State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids,” Energies, vol. 14, no. 18, p. 5595, Sep. 2021, doi: 10.3390/en14185595.
  • [2] A.H. Sabry, A.H. Shallal, H.S. Hameed, and P.J. Ker, “Compatibility of household appliances with DC microgrid for PV systems,” Heliyon, vol. 6, no. 12, p. e05699, Dec. 2020, doi: 10.1016/j.heliyon.2020.e05699.
  • [3] I. Skouros, A. Bampoulas, and A. Karlis, “A bidirectional dual active bridge converter for V2G applications based on DC microgrid,” in 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Apr. 2018, pp. 1–9. doi: 10.1109/EVER.2018.8362396.
  • [4] R.W.A.A. De Doncker, D.M. Divan, and M.H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63–73, Feb. 1991, doi: 10.1109/28.67533.
  • [5] M. Turzyński et al., “Analytical Estimation of Power Losses in a Dual Active Bridge Converter Controlled with a Single-Phase Shift Switching Scheme,” Energies, vol. 15, no. 21, p. 8262, Nov. 2022, doi: 10.3390/en15218262.
  • [6] E.S. Lee, S.H. Song, J.H. Park, and M.R. Kim, “Optimal transformer design of DAB converters in solid-state transformers for maximum power efficiency,” IET Power Electron., vol. 16, no. 10, pp. 1625–1639, Aug. 2023, doi: 10.1049/pel2.12418.
  • [7] H. Beiranvand, E. Rokrok, and M. Liserre, “Volume Optimization in Si IGBT based Dual-Active-Bridge Converters,” in 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, Feb. 2019, pp. 577–582. doi: 10.1109/PEDSTC.2019.8697785.
  • [8] Y.V. Pushpalatha and D. Peftitsis, “Design of Dual Active Bridge Converters with SiC MOSFETs for minimized reflow power operation,” in 2021 IEEE 12th Energy Conversion Congress & Exposition – Asia (ECCE-Asia), Singapore, May 2021, pp. 574–579. doi: 10.1109/ECCE-Asia49820.2021.9479059.
  • [9] N. Blasuttigh, H. Beiranvand, T. Pereira, S. Castellan, and M. Liserre, “Efficiency Trade-off-Oriented Analysis for the integration of DC-DC Converter and Battery Pack in V2G Applications,” in 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, Oct. 2022, pp. 1–7, doi: 10.1109/ECCE50734.2022.9947733.
  • [10] M.F. Fiaz, S. Calligaro, M. Iurich, and R. Petrella, “Analytical Modeling and Control of Dual Active Bridge Converter Considering All Phase-Shifts,” Energies, vol. 15, no. 8, p. 2720, Apr. 2022, doi: 10.3390/en15082720.
  • [11] B. Kwak, M. Kim, and J. Kim, “Inrush current reduction technology of DAB converter for low-voltage battery systems and DC bus connections in DC microgrids,” IET Power Electron., vol. 13, no. 8, pp. 1528–1536, Jun. 2020, doi: 10.1049/iet-pel.2019.0506.
  • [12] F. Krismer and J.W. Kolar, “Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745–2760, Jul. 2012, doi: 10.1109/TIE.2011.2112312.
  • [13] S.J. Ríos, D.J. Pagano, and K.E. Lucas, “Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter,” Energies, vol. 14, no. 2, p. 404, Jan. 2021, doi: 10.3390/en14020404.
  • [14] M. Lukianov, I. Verbytskyi, E.R. Cadaval, and R. Strzelecki, “Bidirectional EV charger integration into LV DC traction grid,” in 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Tallinn, Estonia, Jun. 2023, pp. 1–8. doi: 10.1109/CPE-POWERENG58103.2023.10227489.
  • [15] M. Stojadinović and J. Biela, “Isolated DC-DC Converter for Battery Storage in Traction Applications: Modelling and Design of a Medium Frequency Transformer,” 5th Swiss Competence Center for Energy Research Annual Conference (SCCER 2018)-poster, Sep. 2018, doi: 10.3929/ETHZ-B-000365149.
  • [16] S. Falcones, R. Ayyanar, and X. Mao, “A DC–DC Multiport-Converter-Based Solid-State Transformer Integrating Distributed Generation and Storage,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2192–2203, May 2013, doi: 10.1109/TPEL.2012.2215965.
  • [17] A. Rehman, M. Imran-Daud, S.K. Haider, A.U. Rehman, M. Shafiq, and E.T. Eldin, “Comprehensive Review of Solid-State Transformers in the Distribution System: From High Voltage Power Components to the Field Application,” Symmetry, vol. 14, no. 10, p. 2027, Sep. 2022, doi: 10.3390/sym14102027.
  • [18] M. Morawiec and A. Lewicki, “Power electronic transformer based on cascaded H-bridge converter,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 675–683, Oct. 2017, doi: 10.1515/bpasts-2017-0072.
  • [19] M. Saeed, M.R. Rogina, A. Rodríguez, M. Arias, and F. Briz, “SiC-Based High Efficiency High Isolation Dual Active Bridge Converter for a Power Electronic Transformer,” Energies, vol. 13, no. 5, p. 1198, Mar. 2020, doi: 10.3390/en13051198.
  • [20] S. Farnesi, M. Marchesoni, M. Passalacqua, and L. Vaccaro, “Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments,” Energies, vol. 12, no. 24, p. 4711, Dec. 2019, doi: 10.3390/en12244711.
  • [21] G. Ortiz, J. Biela, D. Bortis, and J.W. Kolar, “1 Megawatt, 20 kHz, isolated, bidirectional 12kV to 1.2kV DC-DC converter for renewable energy applications,” in 2010 International Power Electronics Conference – ECCE ASIA, Sapporo, Japan, Jun. 2010, pp. 3212–3219. doi: 10.1109/IPEC.2010.5542018.
  • [22] T. Gajowik, “Review of multilevel converters for application in solid state transformers,” Przegląd Elektrotechniczny, vol. 2017, no. 4, pp. 3–7, Apr. 2017, doi: 10.15199/48.2017.04.01.
  • [23] P. Trochimiuk, R. Miśkiewicz, J. Rąbkowski, K.N. Kumar, and D. Peftitsis, “Experimental evaluation of SiC-based medium voltage Series Resonant Dual-Active-Bridge three-level DC/DC converters for EV charging,” in 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Tallinn, Estonia, Jun. 2023, pp. 1–6. doi: 10.1109/CPE-POWERENG58103.2023.10227494.
  • [24] Y. Liao, J. Liang, D. Yang, K. Chen, J. Li, and Y. Yan, “Optimal Design Method of LLC-DAB Hybrid Bidirectional DC-DC Converter Based on Multi-objective Particle Swarm Optimization,” in 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China, Dec. 2022, pp. 250–255, doi: 10.1109/SPIES55999.2022.10082688.
  • [25] A. Hillers, D. Christen, and J. Biela, “Design of a Highly efficient bidirectional isolated LLC resonant converter,” in 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, Sep. 2012, p. DS2b.13-1-DS2b.13-8. doi: 10.1109/EPEPEMC.2012.6397282.
  • [26] J.-H. Jung, H.-S. Kim, J.-H. Kim, M.-H. Ryu, and J.-W. Baek, “High efficiency bidirectional LLC resonant converter for 380V DC power distribution system using digital control scheme,” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, Feb. 2012, pp. 532–538. doi: 10.1109/APEC.2012.6165871.
  • [27] A. Rashwan, A.I.M. Ali, and T. Senjyu, “Current stress minimization for isolated dual active bridge DC–DC converter,” Sci. Rep., vol. 12, no. 1, p. 16980, Oct. 2022, doi: 10.1038/s41598-022-21359-1.
  • [28] J. Zeng, Y. He, Z. Lan, Z. Yi, and J. Liu, “Optimal control of DAB converter backflow power based on phase-shifting strategy,” Soft Comput., vol. 24, no. 8, pp. 6031–6038, Apr. 2020, doi: 10.1007/s00500-020-04715-z.
  • [29] B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667–4680, Nov. 2012, doi: 10.1109/TPEL.2011.2180928.
  • [30] S. Fan, Y. Li, Y. Yuan, X. Hu, and W. Dai, “Comparative Analysis of Isolated Bidirectional Dual-Active-Bridge DC-DC Converter Based on EPS and DPS,” in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, Aug. 2019, pp. 1–6, doi: 10.1109/ICEMS.2019.8921569.
  • [31] B. Zhao, Q. Song, and W. Liu, “Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC–DC Converter with Dual-Phase-Shift Control,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 4172–4176, Sep. 2012, doi: 10.1109/TPEL.2012.2189586.
  • [32] M. Capó-Lliteras, G.G. Oggier, E. Bullich-Massagué, D. Heredero-Peris, and D. Montesinos-Miracle, “Analytical and Normalized Equations to Implement the Optimized Triple Phase-Shift Modulation Strategy for DAB Converters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 3, pp. 3535–3546, Jun. 2023, doi: 10.1109/JESTPE.2023.3236097.
  • [33] J. Sun, L. Qiu, X. Liu, J. Zhang, J. Ma, and Y. Fang, “Improved Model Predictive Control for Three-Phase Dual-Active-Bridge Converters with a Hybrid Modulation,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 4050–4064, Apr. 2022, doi: 10.1109/TPEL.2021.3126589.
  • [34] M. Turzyński, Falowniki napięcia z quasi-rezonansowym obwodem pośredniczącym w układach napędowych, Wydanie I. Gdańsk: Wydawnictwo Politechniki Gdańskiej, 2020.
  • [35] J. Everts, F. Krismer, J. Van Den Keybus, J. Driesen, and J.W. Kolar, “Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3954–3970, Aug. 2014, doi: 10.1109/TPEL.2013.2292026.
  • [36] R. Li and D. Xu, “A Zero-Voltage Switching Three-Phase Inverter,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1200-1210, March 2014, doi: 10.1109/TPEL.2013.2260871.
  • [37] R. Barlik, M. Nowak, and P. Grzejszczak, “Power transfer analysis in a single phase dual active bridge,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, pp. 809–828, 2013, doi: 10.2478/bpasts-2013-0088.
  • [38] S. Bachman, M. Turzyński, and M. Jasiński, “Modern control strategy of bidirectional DAB converter with consideration of control nonlinearity,” Sterowanie w Energoelektronice i Napędzie Elektrycznym “SENE 2023”, Łódź 2023.
  • [39] M. Gierczyński, “Analiza pracy przekształtnika DC/DC o topologii DAB z filtrem prądu oraz synteza układu regulacji w przypadku modulacji z pojedynczym przesunięciem fazowym,” doctoral thesis, Warsaw University of Technology, Warsaw 2020.
  • [40] S. Dutta and S. Bhattacharya, “A method to measure the DC bias in high frequency isolation transformer of the dual active bridge DC to DC converter and its removal using current injection and PWM switching,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, USA, Sep. 2014, pp. 1134–1139. doi: 10.1109/ECCE.2014.6953527.
  • [41] J. Wisniewski, S. Baba, and M. Jasinski, “Reliability demonstration of High-Performance Power Supply after IC vendor replacement,” in 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, Apr. 2021, pp. 363–367. doi: 10.1109/PEMC48073.2021.9432635.
  • [42] X. Liu, M. Han, D. Liu, Z. Li, Z. Dong, and Z. Zhang, “A New Start-up Method for Dual Active Bridge Power Converters,” in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, May 2022, pp. 4266–4270. doi: 10.1109/CIEEC54735.2022.9846100.
  • [43] Y.-S. Noh, D. Joo, B.J. Hyon, J.S. Park, J.-H. Kim, and J.-H. Choi, “Development of 3-phase Current-fed Dual Active Bridge Converter for Bi-Directional Battery Charger Application,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, Oct. 2020, pp. 2287–2290. doi: 10.1109/ECCE44975.2020.9236393.
  • [44] R. Kondo, P. Schulting, A.H. Wienhausen, and R.W. De Doncker, “An Automated Component-Based Hardware Design of a Three-Phase Dual-Active Bridge Converter for a Bidirectional On-Board Charger,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, USA, Oct. 2020, pp. 850–857. doi: 10.1109/ECCE44975.2020.9236190.
  • [45] D. Bundgen, A. Thonnessen, N. Fritz, T. Kamp, and R.W. De Doncker, “Highly Integrated 200 kW SiC Three-Phase Dual-Active-Bridge Converter with 3D-Printed Fluid Coolers,” in 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Redondo Beach, USA, Nov. 2021, pp. 182–187. doi: 10.1109/WiPDA49284.2021.9645076.
  • [46] B. Khanzadeh, T. Thiringer, and Y. Serdyuk, “Analysis and Improvement of Harmonic Content in Multi-level Three-phase DAB Converters with Different Transformer Windings Connections,” in 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, May 2022, pp. 2653–2658. doi: 10.23919/IPEC-Himeji2022-ECCE53331.2022.9807076.
  • [47] A. Aouiti, A. Soyed, and F. Bacha, “Control and Study of the Bidirectional Three Phase DAB Converter,” in 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, May 2022, pp. 1008–1013. doi: 10.1109/CoDIT55151.2022.9804020.
  • [48] A. Tong, L. Hang, G. Li, and J. Huang, “Nonlinear characteristics of DAB converter and linearized control method,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, Mar. 2018, pp. 331–337. doi: 10.1109/APEC.2018.8341031.
  • [49] F. Rodriguez, D.O. Garrido, R.O. Nunez, G.G. Oggier, and G.O. Garcia, “Feedback Linearization Control of a Dual Active Bridge Converter Feeding a Constant Power Load,” in 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan, Argentina, Sep. 2022, pp. 1–8. doi: 10.1109/ARGEN-CON55245.2022.9940123.
  • [50] M. Gierczynski, L.M. Grzesiak, and A. Kaszewski, “Cascaded Voltage and Current Control for a Dual Active Bridge Converter with Current Filters,” Energies, vol. 14, no. 19, p. 6214, Sep. 2021, doi: 10.3390/en14196214.
  • [51] K.J. Hartnett, J.G. Hayes, M.G. Egan, and M.S. Rylko, “CCTT-Core Split-Winding Integrated Magnetic for High-Power DC–DC Converters,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4970–4984, Nov. 2013, doi: 10.1109/TPEL.2013.2240394.
  • [52] L. Li, G. Xu, D. Sha, Y. Liu, Y. Sun, and M. Su, “Review of Dual-Active-Bridge Converters with Topological Modifications,” in IEEE Trans. Power Electron., vol. 38, no. 7, pp. 9046–9076, July 2023, doi: 10.1109/TPEL.2023.3258418.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-95ceaa64-a2a2-4a51-8713-a407afc0fffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.