Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 51, iss. 1 | 225--241
Tytuł artykułu

Reliability estimation of a Network Structure using Generalized Trapezoidal Fuzzy Numbers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Classical sets are used commonly to consider reliability. Because of the uncertainty in the data (which considered in the present paper) classical sets fail to describe the reliability accurately. Uncertainty leads to fluctuation in the actual situation of the structure. Fuzzy logic method attempts to test system reliability with the benefit of membership function. Within this context, specific problems of reasoning-based approaches are studied, explored and correlated with standard reliability approaches. In this paper Generalized Trapezoidal Fuzzy numbers (GTrFN) are used to assess the structure's fuzzy reliability. The reliability of each event is assigned with different level of satisfaction and some improved operations on the generalized trapezoidal fuzzy numbers (GTrFN) are used to calculate the fuzzy boundaries for the resultant reliability of the final event along with the degree of satisfaction. Also the results are compared to demonstrate the application of the improved operations on Generalized Trapezoidal Fuzzy Numbers (GTrFN). The obtained results converge to more precise interval values as compare to the vague fuzzy number.
Wydawca

Czasopismo
Rocznik
Strony
225--241
Opis fizyczny
Bibliogr. 20 poz., rys. tab.
Twórcy
autor
  • Lovely Professional University, Punjab
  • Lovely Professional University, Punjab
Bibliografia
  • 1. Balagurusamy E.: Reliability Engineering. Tata McGraw-Hill Education Private Limited, 1984.
  • 2. Cheng C.H., Mon D.L.: Fuzzy system reliability analysis by possibility. Microelectron Reliability, 33:587597. 1993.
  • 3. Dhiman P., Garg H.: Reliability analysis of an industrial system using improved arithmetic operations. M.Sc. thesis, Thapar University, 2016.
  • 4. Eisenack K., Kropp J.: Assessment of management options in marine fisheries by qualitative modeling techniques. Mar Pollut Bull 43:215–224, 1984.
  • 5. Furuta H., Shiraishi N.: Fuzzy importance in fault tree analysis. Fuzzy Sets System 12:205–213, 1984.
  • 6. Jula N., Cepisca C., Covrig M., Racuciu C.: Boolean applications in aircraft electric power systems analysis. 2nd European Computing Conference(ECC’08), Malta, 2008.
  • 7. Kales P.: Reliability: for technology, engineering, and management. Prentice-Hall, Englewood Cliffs, 1998.
  • 8. Lee C., Lu T.C., Lee N.P., Chung U.K.: The study of strategy on new equipment maintenance. Fuzzy Sets Math, 13:37–44, 1999.
  • 9. Liang G.S., Wang M.J.J.: Fuzzy fault tree analysis using failure possibility. Microelectron Reliability 33:587–597, 1993.
  • 10. Lin C.T., Wang M.J.: Hybrid fault tree analysis using fuzzy sets. Reliability Engineering System Safety, 58:205–213, 1997.
  • 11. Mahapatra G.S., Roy T.K.: Optimal Redundancy Allocation in Series-Parallel System using Generalized Fuzzy Number, 27(1):1-20, 2011.
  • 12. Mon D.L., Cheng C.H.: Fuzzy system reliability analysis by interval of confidence. Fuzzy Sets System, 56:29-35, 1993.
  • 13. Sharma M.K., Pandey D.: Reliability analysis of multistate fault tree model. Mathematics Today, 25:7-21, 2009.
  • 14. Sharma M.K., Pandey D.: Vague Set Theoretic Approach to Fault Tree Analysis. Journal of International Academy of Physical Sciences, 14(1):1-14, 2010.
  • 15. Sharma M.K.: Vague Reliability of a Network System Using Sugeno’s Fuzzy Failure
  • Rates. IOSR Journal of Engineering (IOSRJEN) 8(12):38-48, 2018.
  • 16. Singer D.: A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets System, 34:145–155, 1990.
  • 17. Suresh P.V., Babar A.K., Raj V.V.: Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Systems, 83:135–141, 1996.
  • 18. Zadeh L.A.: Fuzzy Sets. Information and Control, 8(3):338-353, 1965.
  • 19. Zhang D.L., Guo C., Chen D.: On generalized fuzzy numbers. Iranian Journal of Fuzzy Sets, 16(1):61-73, 2019.
  • 20. Zimmermann H.: Fuzzy Set Theory and its applications. Kluwer Academic Publishers, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-95b9cc9c-5fce-426c-9e2e-0f09f51f7267
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.