Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the effect of a 10MW DTU wind turbine (WT) on a semi-submersible platform is examined from the point of view of its dynamic behaviour as part of a mooring system with attached buoys. The platform has a rectangular geometry, and consists of four offset and one main cylindrical members. The structure is assumed to receive both wave and wind loading simultaneously. A coupled analysis within the frequency domain is performed using two boundary element method software packages, NEMOH and HAMS. The results are presented in the form of parametric graphs for each of the software packages used and for varying wave directions. The graphs show the hydrodynamic loads exerted on the platform, the wave elevation, the added masses, the hydrodynamic damping coefficients, the mooring line tensions, and the Response Amplitude Operators (RAOs) for the motion of the platform.
Czasopismo
Rocznik
Tom
Strony
24--34
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Naval Architecture, School of Engineering, University of West Attica, Egaleo, Attica, Greece, tmazar@uniwa.gr
autor
- School of Naval Architecture and Marine Engineering, National Technical University of Athens, Zografos Campus, Athens, Greece
Bibliografia
- 1. L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, and R. Wennersten, “Evaluating the benefits of integrating floating photovoltaic and pumped storage power system,” Energy Conversion and Management, Vol. 194, pp. 173-185, 2019, doi.org/10.1016/j.enconman.2019.04.071.
- 2. G. Da Silva and D. Branco, “Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts,”Impact Assessment and Project Appraisal, Vol. 36(5), pp. 390-400, 2018, doi.org/10.1080/14615517.2018.1477498.
- 3. S. Kim, Y. Lee, S. Seo, H. Joo, and S. Yoon, “Structural design and installation of tracking‐type floating PV generation system,” Composites Research, Vol. 27(2), pp. 59-65, 2014, doi.org/10.7234/composres.2014.27.2.059.
- 4. B. Chico Hermanu, B. Santoso, S. Suyitno, and F. Wicaksono, “Design of 1 MWp floating solar photovoltaic (FSPV) power plant in Indonesia,” AIP Conference Proceedings, Surakarta, Indonesia, 9-11 October, 2019, doi.org/10.1063/1.5098188.
- 5. E. Do Sacramento, P. Carvalho, J. De Araujo, D. Riffel, R. Da Cruz Correa, and J. Neto, “Scenarios for use of floating photovoltaic plants in Brazilian reservoirs,” IET Renewable Power Generation, Vol. 9(8), pp. 1019-1024, 2015, doi.org/10.1049/iet-rpg.2015.0120.
- 6. X. Zhao, X. Du, M. Li, and M. Goteman, “Semi-analytical study on the hydrodynamic performance of an interconnected floating breakwater-WEC system in presence of the seawall,”Applied Ocean Research, Vol. 109, 2021, doi.org/10.1016/j.apor.2021.102555.
- 7. B. Guo, Q. Elmoosa, C. Windt, and J. Ringwood, “Impact of nonlinear hydrodynamic modelling on geometric optimization of a spherical heaving point absorber,”14th European Wave and Tidal Energy Conference, Plymouth, UK, 5-9 September, 2021.
- 8. S. Michele and E. Renzi, “A second-order theory for an array of curved wave energy converters in open sea,” Journal of Fluids and Structures, Vol. 88, pp. 315-330, 2019, doi.org/10.1016/j.jfluidstructs.2019.05.007.
- 9. D. Evans and R. Porter, “Efficient calculation of hydrodynamic properties of OWC type devices,” Journal of Offshore Mechanics and Arctic Engineering, Vol. 119(4), pp. 210-218, 1997, doi.org/10.1115/1.2829098.
- 10. J. Fitzgerald and L. Bergdahl, “Considering mooring cables for offshore wave energy converters,” 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11-13 September, 2007.
- 11. J. Fitzgerald and L. Bergdahl, “Including moorings in the assessment of a generic offshore wave energy converter: A frequency domain approach,” Marine Structures, Vol. 21(1), pp. 23-46, 2008, doi.org/10.1016/j.marstruc.2007.09.004.
- 12. L. Johanning and G. Smith, “Improved measurement technologies for floating wave energy converter (WEC) mooring arrangements,” Underwater Technology, Vol. 27(4), pp. 175-184, 2008, doi.org/10.3723/ut.27.175.
- 13. S. Yang, J. Ringsberg, E. Johnson, Z. Hu, and J. Palm, “A comparison of coupled and de-coupled simulation procedures for the fatigue analysis of wave energy converter mooring lines,” Ocean Engineering, Vol. 117(1), pp. 332-345, 2016, doi.org/10.1016/j.oceaneng.2016.03.018.
- 14. T. Mazarakos, D. Konispoliatis, D. Manolas, S. Mavrakos, and S. Voutsinas, “Coupled hydro-aero-elastic analysis of a floating structure for offshore wind and wave energy sources exploitation,” 12th International Conference on Stability of Ships and Ocean Vehicles, Glasgow, Scotland, UK, 14-19 June, 2015.
- 15. T. Mazarakos, D. Konispoliatis, D. Manolas, S. Voutsinas, and S. Mavrakos, “Modelling of an offshore multi-purpose floating structure supporting a wind turbine including second-order wave loads,” 11th European Wave and Tidal Energy Conference, Nantes, France, 6-11 September, 2015.
- 16. S. Seng, C. Monroy, and S. Malenica, “Dynamic response of monopile wind turbine in large waves,” 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, UK, 9-14 June, 2019.
- 17. K. Maes, W. Weijtjens, E. De Ridder, and G. Lombaert, “Inverse estimation of breaking wave loads on monopile wind turbines,” Ocean Engineering, Vol. 163(1), pp. 544-554, 2018, doi.org/10.1016/j.oceaneng.2018.05.049.
- 18. S. Jalbi and S. Bhattacharya, “Concept design of jacket foundations for offshore wind turbines in 10 steps,” Soil Dynamics and Earthquake Engineering, Vol. 139, 2020, doi.org/10.1016/j.soildyn.2020.106357.
- 19. I. Chen, B. Wong, Y. Lin, S. Chau and H. Huang, “Design and analysis of jacket substructures for offshore wind turbines,”Energies, Vol. 9(4), 2016, doi.org/10.3390/en9040264.
- 20. M. Karimirad and T. Moan, “Wave and wind induced motion response of catenary moored spar wind turbine,”3rd International Conference on Computational Methods in Marine Engineering, Trondheim, Norway, 15-17 June, 2009.
- 21. M. Karimirad and T. Moan, “Wave- and wind-induced dynamic response of a spar-type offshore wind turbine,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 138(1), 2012, doi.org/10.1061/(ASCE)WW.1943-5460.0000087.
- 22. T. Utsunomiya, T. Sato, H. Matsukuma, and K. Yago, “Experimental validation for motion of a spar-type floating offshore wind turbine using 1/22.5 scale model,”28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, May 31-June 5, 2009.
- 23. F. Huijs, R. De Bruijn, and F. Savenije, “Concept design verification of a semi-submersible floating wind turbine using coupled simulations,” Energy Procedia, Vol. 53, pp. 2-12, 2014, doi.org/10.1016/j.egypro.2014.07.210.
- 24. M. Hall and A. Goupee, “Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data,” Ocean Engineering, Vol. 104(1), pp. 590-603, 2015, doi.org/10.1016/j.oceaneng.2015.05.035.
- 25. T. Mazarakos, D. Manolas, and S. Mavrakos, “Design and hydro-aero-elastic modeling of a multi leg mooring concept for floating wind turbine applications,” 16th International Conference on Ecological Vehicles and Renewable Energies, Monte-Carlo, Monaco, 5-7 May, 2021.
- 26. T. Mazarakos, D. Manolas, and S. Mavrakos, “Design and hydro-aero-elastic modeling of a TLP concept for floating wind turbine applications,” 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 16-21 June, 2021.
- 27. G. Katsaounis, S. Polyzos, and S. Mavrakos, “An experimental study of the hydrodynamic behavior of a TLP platform for a 5MW wind turbine with OWC devices,” 7th International Conference on Computational Methods in Marine Engineering, Nantes, France, 15-17 May, 2017.
- 28. Y. Bae, M. Kim, and Y. Shin, “Rotor-floater-mooring coupled dynamic analysis of mini TLP-type offshore floating wind turbines,” 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6-11 June, 2010.
- 29. T. Mazarakos, D. Manolas, T. Grapsas, S. Mavrakos, V. Riziotis, and S. Voutsinas, “Conceptual design and advanced hydroaero-elastic modelling of a TLP concept for floating wind turbine applications,” 1st International Conference on Renewable Energies Offshore, Lisbon, Portugal, 24-26 November, 2014.
- 30. T. Mazarakos, T. Tsaousis, S. Mavrakos, and I. Chatjigeorgiou, “Analytical investigation of tension loads acting on a TLP floating wind turbine,” Journal of Marine Science and Engineering, Vol. 10(3), 2022, doi.org/10.3390/jmse10030318.
- 31. Z. Yuan, A. Incecik, and C. Ji, “Numerical study on a hybrid mooring system with clump weights and buoys,” Ocean Engineering, Vol. 88(15), pp. 1-11, 2014, doi.org/10.1016/j.oceaneng.2014.06.002.
- 32. N. Bruschi, G. Ferri, E. Marino, and C. Borri, “Influence of clumps-weighted moorings on a spar buoy offshore wind turbine,” Energies, Vol. 13(23), 2020, doi.org/10.3390/en13236407.
- 33. I. Chatjigeorgiou, “A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers,” Ocean Engineering, Vol. 35(7), pp. 616-636, 2008, doi.org/10.1016/j.oceaneng.2008.01.006.
- 34. S. Mavrakos, V. Papazoglou, M. Triantafyllou, and J. Hatjigeorgiou, “Deep water mooring dynamics,”Marine Structures, Vol. 9(2), pp. 181-209, 1996, doi.org/10.1016/0951-8339(94)00019-O.
- 35. S. Mavrakos and J. Chatjigeorgiou, “Dynamic behaviour of deep water mooring lines with submerged buoys,” Computers & Structures, Vol. 64(1-4), pp. 819-835, 1997, doi.org/10.1016/S0045-7949(96)00169-1.
- 36. C. Ji and Z. Yuan, “Experimental study of a hybrid mooring system,” Journal of Marine Science and Technology, Vol. 20, pp. 213-215, 2015, doi.org/10.1007/s00773-014-0260-7.
- 37. D. Qiao, J. Yan, and J. Ou, “Effects of mooring line with buoys system on the global response of a semi-submersible platform,” Brodogradnja, Vol. 65(41), pp. 79-96, 2014.
- 38. K. Xu, K. Larsen, Y. Shao, M. Zhang, Z. Gao, and T. Moan, “Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design,” Ocean Engineering, Vol. 219(1), 2021, doi.org/10.1016/j.oceaneng.2020.108377.
- 39. J.-T. Wu, J.-H. Chen, C.-Y. Hsin, and F.-C. Chiu, “Dynamics of the FKT system with different mooring lines,” Polish Maritime Research, Vol. 26(1), pp. 20-29, 2019, doi.org/10.2478/pomr-2019-0003.
- 40. H. Zhang, J. Zeng, B. Jin, C. Chou, H. Li, and H. Dong, “Experimental study of the nonlinear behaviour of deepsea mooring polyester fibre ropes,” Polish Maritime Research, Vol. 30(3), pp. 153-162, 2023, doi.org/10.2478/pomr-2023-0048.
- 41. A. Babarit and G. Delhommeau, “Theoretical and numerical aspects of the open source BEM solver NEMOH,” 11th European Wave and Tidal Energy Conference, Nantes, France, 6-11 September, 2015.
- 42. L. Yingyi, “HAMS: A frequency-domain preprocessor for wave-structure interactions—Theory, development, and application,” Journal of Marine Science and Engineering, Vol. 7(3), 2019, doi.org/10.3390/jmse7030081.
- 43. C. Bak, F. Zahle, R. Bitsche, T. Kim, A. Yde, L. Henriksen, A. Natarajan, and M. Hansen, “Description of the DTU 10 MW reference wind turbine,” Wind Energy Report-I-0092, 2013.
- 44. O. Faltinsen, Sea loads on ships and offshore structures. Cambridge University Press, Ocean Technology Series, 1990.
- 45. T. Mazarakos, D. Konispoliatis, G. Katsaounis, S. Polyzos, D. Manolas, S. Voutsinas, T. Soukissian, and S. Mavrakos, “Numerical and experimental studies of a multi-purpose floating TLP structure for combined wind and wave Energy exploitation,” Mediterranean Marine Science, Vol. 20(4), pp. 745-763, 2019, doi.org/10.12681/mms.19366.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-959b2245-218b-40f2-8bd9-35211aeb334c