Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 44, no 4 | 63--80
Tytuł artykułu

CO2 capture from flue gases in a temperature swing moving bed

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a test stand for the capture of CO2 from flue gases arising due to firing pulverised hard coal. The stand, financed from the 2014–2021 Norway Grants, is installed at a Polish power plant. The innovation of the proposed CO2 capture method, developed by the Norwegian partner in the project (SINTEF Industry), lies in the use of activated carbon in the process of temperature swing adsorption in a moving bed. The paper also presents preliminary results of numerical simulations performed using the General PROcess Modelling System (gPROMS) software. The simulations concerned the operation of a supercritical power unit combined with a system for capturing CO2 from flue gases. Transient operation of the system was analysed, assuming rapid changes in the power unit load. Special attention was paid to the CO2 capture process energy consumption at an increase in load by 5% of the power unit nominal capacity in 30 s. It is found that the proposed CO2 capture method “keeps up” with such rapid load changes at the method energy consumption smaller than 2 MJ/kg CO2.
Wydawca

Rocznik
Strony
63--80
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr., wz.
Twórcy
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland, slawomir.gradziel@pk.edu.pl
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Environmental Engineeringand Energy, Warszawska 24, 31-155 Kraków, Poland
  • SINTEF Industry, P.O. Box 124 Blindern, N0314 Oslo, Norway
  • Norwegian University of Science and Technology, Department of Energyand Process Engineering, P.O. Box 8900, NO-7491 Trondheim, Norway
  • Norwegian University of Science and Technology, Department of Energyand Process Engineering, P.O. Box 8900, NO-7491 Trondheim, Norway
  • SINTEF Industry, P.O. Box 124 Blindern, N0314 Oslo, Norway
Bibliografia
  • [1] International Energy Agency: Global Energy Review: CO2 Emissions in 2022. https://www.iea.org/t&c/ (accessed: 26 June 2023).
  • [2] Intergovernmental Panel on Climate Change (IPCC): Global Warming of 1.5◦C. Cambridge Univ. Press, 2022. doi: 10.1017/9781009157940.001
  • [3] Jiang L., Wang R.Q., Gonzalez-Diaz A., Smallbone A., Lamidi R.O., Roskilly A.P.: Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl. Therm. Eng. 169(2020), 114973.
  • [4] Mondal M.K., Balsora H.K., Varshney P.: Progress and trends in CO2 capture/separation technologies: a review. Energy 46(2012), 431–441.
  • [5] Zhao R., Deng S., Liu Y., Zhao Q., He J., Zhao L.: Carbon pump: Fundamental theory and applications. Energy 119(2017), 1131–1143.
  • [6] Olegovich V., Kindra V.O., Milukov I.A., Shevchenko I.V., Shabalova S.I., Kovalev D.S.: Thermodynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture. Arch. Thermodyn. 42(2021), 4, 103–121. doi:10.24425/ather.2021.139653
  • [7] Lian Y., Deng S., Li S., Guo Z., Zhao L., Yuan X.: Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. Int. J. Greenh. Gas Control 85(2019), 187–198.
  • [8] Niegodajew P., Asendrych D., Drobniak S.: Numerical analysis of CO2 capture efficiency in post-combustion CCS technology in terms of varying flow conditions. Arch. Thermodyn. 34(2013), 4, 123–136. doi: 10.2478/aoter-2013-0033
  • [9] Akhtar F., Andersson L., Ogunwumi S., Hedin N., Bergström L.: Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34(2014), 7, 1643–1666.
  • [10] Farmahini A.H., Krishnamurthy S., Friedrich D., Brandani S., Sarkisov L.: Performance-based screening of porous materials for carbon capture. Chem. Rev. 121(2021), 17, 10666–10741.
  • [11] Masala A., Vitillo J.G., Mondino G., Martra G., Blom R., Grande C.A., Bordiga S.: Conductive ZSM-5-based adsorbent for CO2 capture: active phase vs monolith. Ind. Eng. Chem. Res. 56(2017), 30, 8485–8498.
  • [12] Rezaei F., Webley P.: Structured adsorbents in gas separation processes. Sep. Purif. Technol. 70(2010), 3, 243–256.
  • [13] Morales-Ospino R., Santos V.N., Lima Jr A.R.A., Torres A.E.B., VilarrasaGarcía E., Bastos-Neto M., Cavalcante Jr C.L., Azevedo D.C.S., Marques C.R.M., de Aquino T.F., Vasconcelos L.B., Knaebel K.S.: Parametric analysis of a moving bed temperature swing adsorption (MBTSA) process for post-combustion CO2 capture. Ind. Eng. Chem. Res. 60(2021), 29, 10736–10752. 10.1021/acs.iecr.0c05067
  • [14] Zanco S.E., Mazzotti M., Gazzani M., Romano M.C., Martínez I.: Modelling of circulating fluidized beds systems for post-combustion CO2 capture via temperature swing adsorption. AlChE J. 64(2018), 5, 1744–1759.
  • [15] Ben-Mansour R., Qasem N.A.A.: An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Conv. Manag. 156(2018), 10–24.
  • [16] Mondino G., Grande C.A., Blom R., Nord L.O.: Moving bed temperature swing adsorption for CO2 capture from a natural gas combined cycle power plant. Int. J. Greenh. Gas Control 85(2019), 58–70.
  • [17] Mondino G., Grande C.A., Blom R., Nord L.O.: Evaluation of MBTSA technology for CO2 capture from waste-to-energy plants. Int. J. Greenh. Gas Control 118(2022),103685.
  • [18] Kim, K., Son, Y., Lee, W.B., Lee, K.S.: Moving bed adsorption process with internal heat integration for carbon dioxide capture. Int. J. Greenh. Gas Control 17(2013), 13–24.
  • [19] Åström K.J., Eklund K.: A simplified non-linear model of a drum boiler-turbine unit. Int. J. Control 16(1972), 1, 145–169.
  • [20] Chien K.L., Ergin E.I., Ling C., Lee A., Calif A.: Dynamic analysis of a boiler. ASME Trans. 80(1958), 1809–1819.
  • [21] Mesarovic M.M.: A mathematical simulation method for the evaluation of operational and accidental transients in thermal power systems. Mathematical modelling and computer simulation of processes in energy systems. Proc. Int. Ctr Heat Mass Transf. Hemisphere, 1990.
  • [22] Grądziel S.: Analysis of thermal and flow phenomena in natural circulation boiler evaporator. Energy 172(2019), 881–891.
  • [23] Chaibakhsh A., Ghaffari A., Moosavian S.A.A.: A simulated model for a oncethrough boiler by parameter adjustment based on genetic algorithms. Simul. Model. Pract. Theory 15(2007), 1029–1051.
  • [24] Li H., Huang X., Zhang L.: A lumped parameter dynamic model of the helical coiled once-through steam generator with movable boundaries. Nucl. Eng. Des. 238(2008), 1657–1663.
  • [25] Li X.: Dynamic behaviour of superheated steam and ways of control, Front. Energy Power Eng. China 22(2008), 1, 25–30.
  • [26] Zima W.: Simulation of dynamics of a boiler steam superheater with an attemperator. Proc. Inst. Mech. Eng. A: J. Power Energy 220(2006), 793–801. doi: 10.1243/09576509JPE268
  • [27] Zima W.: Mathematical modelling of transient processes in convective heated surfaces of boilers. Forschung im Ingenieurwesen 71(2007), 113–123.
  • [28] Zima W.: Modelling of the dynamics of the convective heating surfaces of boilers. Arch. Thermodyn. 20(1999), 1-2, 71–92.
  • [29] Zima W.: Numerical modelling of dynamics of steam superheaters. Energy, 26(2001), 1175–1184.
  • [30] Zima W., Grądziel S., Cebula A.: Modelling of heat and flow phenomena occurring in waterwall tubes of boiler for supercritical steam parameters. Arch. Thermodyn. 31(2010), 3, 19–36. doi: 10.2478/v10173-010-0012-y
  • [31] Zima W., Grądziel S., Cebula A., Rerak M., Kozak-Jagieła E., Pilarczyk M.: Mathematical model of a power boiler operation under rapid thermal load changes. Energy 263(2023). doi: 10.1016/j.energy.2022.125836
  • [32] Taler J., Zima W., Ocłoń P., Grądziel S., Taler D., Cebula A., Jaremkiewicz M., Korzeń A., Cisek P., Kaczmarski K., Majewski K.: Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading, Energy 175(2019), 580–592.
  • [33] gPROMS Model Builder Version 6.0. Process System Enterprise (PSE). UK 2019.
  • [34] Mellapack 500Y, Sulzer, Switzerland. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.pdf (accessed 26 June 2023).
  • [35] Mondino G., Grande C.A., Blom R.: Effect of gas recycling on the performance of a moving bed temperature-swing (MBTSA) process for CO2 capture in a coal fired power plant context. Energies 10(2017), 745. doi: 10.3390/en10060745
  • [36] https://kureha.de/bac-activated-carbon/ (accessed 26 June 2023).
  • [37] Joss L., Gazzani M., Mazzotti M.: Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chem. Eng. Sci. 158(2017), 381–394.
  • [38] Nord L.O., Bolland O.: Carbon Dioxide Emission Management in Power Generation. Wiley, 2020.
  • [39] Feron P.H.M., Cousins A., Jiang K., Zhai R., Garcia M.: An update of the benchmark post-combustion CO2 capture technology. Fuel 273(2020), 117776.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9552c3e3-cdb3-4a6f-9c1b-8ecb0d67d434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.