Czasopismo
2018
|
Vol. 92, nr 1
|
33--40
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: To analyse the potential of various scenarios for reduction of carbon footprint of iron and steel sector and to reveal plausible pathways for modernisation. Design/methodology/approach: Several scenarios have been developed in order to assess the dynamics and extent of decarbonisation required to meet the global climate change mitigation target. This includes deployment of the best available technologies, increased share of secondary steel production route and deployment of innovative ironmaking technologies with various decarbonisation extent achieved in a variable timeframe. Findings: The window of opportunities to ensure compliance of steel sector development with climate goal still exists though shrinks. Modernisation shall include global deployment of best available technologies, increased share of secondary steel production and rapid deployment of innovative technologies including carbon capture and storage. Delayed modernisation will require much deeper decarbonisation, which will increase the total cost of mitigation. International policies shall be put in place to ensure availability of funding and to assist technology transfer. Short term transition strategies shall be employed as soon as possible for bridging long term climate change mitigation strategies and current state of the iron and steel industry worldwide. Research limitations/implications: Methodology applied takes into account the best available technologies and some novel ironmaking methods with the potential for commercialisation during the next decade; however, it is implied that the radically innovative iron- and steelmaking technologies with near-zero CO2 emissions will not be mature enough to deliver tangible impact on the sector’s carbon footprint before 2050. Practical implications: Obtained results can be helpful for definition of the modernisation strategies (both state-level and corporate) for the iron and steel industry. Originality/value: Dynamics and extent of decarbonisation required to meet global climate change mitigation targets have been revealed and the results can be valuable for assessment of the consistency of sectoral climate strategies with global targets.
Rocznik
Tom
Strony
33--40
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- National Metallurgical Academy of Ukraine, 4 Gagarin Avenue, Dnipro, 49005, Ukraine Corresponding, shatokha@metal.nmetau.edu.ua
Bibliografia
- [1] Energy Technology Perspectives: Harnessing Electricity’s Potential, OECD/IEA, Paris, 2014.
- [2] World Steel Association: Energy use in the steel industry, Available from: https://www.worldsteel.org/ en/dam/jcr:f07b864c-908e-4229-9f92-669flc3abf4c/ fact_energy_2016.pdf, Access in: 02.06.2018.
- [3] Commission Notice on the preliminary Carbon Leakage List for the EU Emissions Trading System for Phase 4 (2021-2030), Available from: https://ec.europa.eu/clima/news/commission-notice- preliminary-carbon-leakage-list-eu-emissions-trading- system-phase-4-2021-2030_en, Access in: 02.06.2018.
- [4] Taxation code of Ukraine (2017), Amended by Law of Ukraine 1910-VIII of 23.02.2017, Available from: http://zakon2.rada.gov.ua/laws/show/2755-17, Access in: 02.06.2018 (Ukrainian).
- [5] On the results of Ukrmetalurgprom activities in 2016¬2017, Available from: http://www.drs.gov.ua/wp- content/uploads/2017/10/Kalenkov-O.F.-Ukrmetalurg- prom.pdf, Access in: 02.06.2018 (Ukrainian).
- [6] World steel in figures 2018, Available from: https://www.worldsteel.org/en/dam/jcr:f9359dff-9546- 4d6b-bed0-996201185b 12/W orld+Steel+in+Figures+ 2018.pdf, Access in: 02.06.2018.
- [7] National Cadastre on anthropogenic emissions and greenhouse gases adsorption. Available from: http s ://menr.gov.ua/ content/nacionalniy-kadastr- antropogennih-vikidiv-iz-dzherel-ta-absorbcii- poglinachami-pamikovih-gaziv.html, Access in: 02.06.2018.
- [8] EU Emissions Trading System (ETS) data viewer, Available from: https://www.eea.europa.eu/data-and- maps/dashboards/emissions-trading-viewer-1, Access in: 02.06.2018.
- [9] AccentureStrategy: Steel Demand Beyond 2030. Presented to OECD, September 28, 2017, Available from: https://www.oecd.org/industry/ind/Item_4b_ Accenture_Timothy_van_Audenaerde.pdf, Access in: 02.06.2018.
- [10] S. Pauliuk, R.L. Milford, D.B. Müller, J. M. Allwood, The steel scrap age, Environmental Science & Technology 47 (2013) 3448-3454.
- [11] Steel and C02 - a global perspective, Proceedings of the IEA workshop, 20th November 2017, Available from: https://www.iea.org/media/workshops/2017/ ieaglobalironsteeltechnologyroadmap/ISTRMSessi onl_A._PURVIS_241117.pdf, Access in: 02.06.2018.
- [12] IEA Energy Technology Perspectives: Scenarios & Strategies to 2050, OECD/IEA, Paris, 2010.
- [13] ULCOS top gas recycling blast furnace process. Final Report, European Commission, EUR 26414, doi: 10.2777/59481.
- [14] J. van der Stel, G. Louwerse, D. Sert, A. Hirsch, N. Eklund, M. Pettersson, Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking, Ironmaking and Steelmaking 40 (2013) 483-489.
- [15] K. Nishioka, Y. Ujisawa, S. Tonomura, N. Ishiwata, P. Sikstrom, Sustainable Aspects of C02 Ultimate Reduction in the Steelmaking Process (COURSE50 Project), Part 1: Hydrogen Reduction in the Blast Furnace, Journal of Sustainable Metallurgy 2/3 (2016) 200-208.
- [16] H. Croezen, M. Korteland, Technological develop¬ments in Europe: A long-term view of C02 efficient manufacturing in the European region, CE Delft, 2010.
- [17] K. Meijer, C. Zeilstra, C. Treadgold, J. van der Stel, T. Peeters, J. Borlee, M. Skorianz, C. Feilmayr, P. Goedert, R. Dry, The HIsama ironmaking process, Proceedings of the METEC & 2nd ESTAD, Düsseldorf, 2015.
- [18] S-H. Yi, H-G. Lee, The recent update of innovative ironmaking process FINEX, Proceedings of the 2nd International Conference Advances in Metallurgical Processes & Materials, Kyiv, 2015.
- [19] On the Future of Carbon Capture and Storage in Europe, Brussels, 27.3.2013 COM(2013) 180 final.
- [20] O. Krabbe, G. Linthorst, K. Blok, W. Crijns-Graus, D. P. van Vuuren, N. Höhne, P. Faria, N. Aden, A.C. Pineda, Aligning corporate greenhouse-gas emissions targets with climate goals, Nature Climate Change 5 (2015) 1057-1060.
- [21] Russian Technology: ROMELT. Available from: http://erazvitie.org/english/otechestvnnye_tehnologii_r omelt/, Access in: 02.06.2018.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-954ff6ef-23e6-4ba9-890d-0eb36096d8cf