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Abstract

This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter 
estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. 
This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this 
study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and 
a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally 
exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping 
controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents 
the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for 
chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome 
to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and 
the efficacy of the proposed scheme. 
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introduction

Marine vessels frequently encounter roll behaviour. Non-
periodic patterns appear at the end of stable responses, despite 
regular waves. This phenomenon is hard to predict and control 
by the officers on the bridge. Chaos is an aperiodic, long-
term motion that exhibits sensitive dependence on initial 
conditions in a deterministic system. Even slight changes 

in initial conditions (IC) result in various outcomes. The 
sensitivity of a chaotic dynamic system has merit because it 
shows a different periodic orbit by using a light adjustment of 
parameters without the whole reconstruction of the system [1]. 
However, controlling the non-periodic behaviour of a chaotic 
system is not a trivial issue in the marine environment.

First of all, this paper attempts to predict non-periodic 
roll motions through machine learning (ML) techniques, 
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before their manipulation. Simple and complex systems were 
recently studied under a veil of chaos, using ML, to contribute 
to predicting dynamic behaviour [2]. Notably, echo state 
networks (ESN), which are termed ‘reservoir computing’ (RC), 
are efficient and easy to apply to the black box modelling of 
dynamic systems [3]. The RC is a recurrent neural network 
(RNN)-based framework that enables the readout to extract 
the desired output by using linear mapping [4, 5]. The 
sensitivity of a chaotic system challenges prediction, which 
only works if the initial uncertainty is not quickly multiplied 
by the evolution law [6]. However, this skill is preferable 
for chaotic time series forecasts because it remembers past 
values and handles external disturbances, where all of the 
past elements are implicitly contained in a state vector [4]. 

As mentioned, the non-periodic roll motions are revealed 
at the end of stable responses, despite regular excitations [7]. 
However, estimating the frequencies of unknown external 
disturbances is difficult because the waves acting on a ship can 
not be known in advance [8]. Under manoeuvring conditions, 
it is difficult to measure the exact amounts of time-varying 
disturbances for a ship, such as waves, winds, currents, 
ice-covered waters, green waters, etc. Also, estimating the 
sinusoidal signal is a significant problem for the control 
system. It is essential to identify the parameters of unknown 
periodical excitations in tracking and rejection control [9]. 
In order to realise the safe voyage of marine vessels under 
severe sea situations, this paper investigates the parameter 
estimation of unknown periodic disturbances and the 
suppression of non-periodic roll motions.

It is known that a periodic excitation consists of the 
sum of its frequency, amplitude, bias (offset), and phase 
(randomness). As for the real-time processing of chaotic 
motion in nonlinear systems, a potential solution, based on 
Fourier analysis, is deemed to be an unwelcome method, 
owing to the maximisation of the periodogram [10]. A similar 
work [10] identified the full parameters by using a fifth-order 
estimator, showing the complexity and computational costs. 
The frequency and other parameter estimation techniques are 
separated in the present paper. Other parameter estimations 
of amplitude, bias, and phase are treated using the simple 
update law without any observers [9, 11]. In order to design the 
disturbance rejection control, precise frequency estimation 
is guaranteed with finite-time convergence [8]. To achieve 
the stability and robustness of a nonlinear system, this 
paper implements linear second-order filters and parameter 
estimation errors, to converge the global parameter estimation 
without a higher-order estimator. Such a filtering operation 
overcomes the infinitely increasing auxiliary vector [12]. 
Then, a backstepping control is designed to suppress the non-
periodic roll motions of the marine vessels under unknown 
periodic disturbances. 

The remainder of the paper is organised as follows. A ship 
rolling model and control synthesis for non-periodic roll 
stabilisation, using backstepping and roll prediction with 
RC, are explained in Section 2. The parametric estimation of 
amplitude, frequency, offset, phase, and adaptive mechanisms 
is expressed. Numerical simulations verify the proposed 

schemes in Section 3. The dynamic theory is used to explore 
the uncontrolled roll responses using the bifurcation diagram, 
Poincare map, and Lyapunov exponents (LEs). Final remarks 
and recommended future research directions are given in 
Section 4.

MATHEMATICAL FORMULATION

Ship rollING model

The rolling motion of a ship, in transverse directions, can 
be modelled as follows [7]:

[ ]44 44 44 ( ) ( )seaI A B GZ F tφ φ φ+ + + ∆ =  (1)

where φ (rad), φ (rad/s), and φ (rad/s2) are the roll 
angle, rate, and acceleration; 44I , and 44A 2(kg m )⋅ are 
the moment of inertia and the added mass coefficients; and 

44B 2(kg m / )s⋅  is the damping coefficient. It should be 
noted that both the added mass and hydrodynamic damping 
coefficients are a function of the wave frequency; ∆  is the 
ship’s displacement; GZ  is the righting lever; and seaF  is 
the wave-exciting moment. As for periodic roll excitation, 
the external wave seaF  is given as:

( ) ( ) cos( )sea rollF t HF tω ω= (2)

where rollF  ( N m⋅ ) is the rolling moment; and ω  and H
are the angular frequency and the wave amplitude. Generally, 
Eq. (1) can be rewritten with a quadratic damping, as follows:

[ ]44 44 44 44 1

3
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where 44qB  is the quadratic damping coefficient. Eq. (3) can 
be scaled into a non-dimensional equation, thus:
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(4)

with ( ) ( )x tτ φ= , ntτ ω= , and / nω ωΩ = ; where Ω  is 
the ratio of excitation (ω ) to a natural angular frequency  
(/ nω ωΩ = ). Then, the simplified form is derived as: 

3
1 2( ) ( ) ( ) ( ) ( ) ( ) cos( )x b x b x x x kx Fτ τ τ τ τ τ τ+ + − + = Ω    (5)
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where 1b and 2b are the linear and nonlinear damping and 
k is the restoring part of a duffing type roll motion. 

Control synthesis of backstepping

The idea of backstepping is to recursively design a controller 
by considering some of the state variables as being ‘virtual 
controls’ and creating intermediate control laws for them [13]. 
This method is one of the proper nonlinear controllers for 
regulating the desired ship motions. By adding the actuation  
( u ) in Eq. (5), the complete control system represents 
a forced rolling system with an active control input: 

3
1 2 cos( )x b x b x x x kx F uτ+ + − + = Ω +    (6)

where the periodic excitation cos( )F τΩ  is given as a time-
varying disturbance. In fact, an active controller is vital, to 
achieve a satisfactory anti-rolling effect. By selecting the state 
variables as 1x x= and 2x x= , the governing Eq. (6) 
can be rewritten into the state-space representation, as follows:

( ) 1,x Ax f x Bu B dτ= + + + (7)

In Eq. (7), d  represents the time-varying disturbance 
input ( cos( )F τΩ ), while the state vector ( )x , system 
matrices ( 1A, B, B ), and nonlinear term ( )f  are 
described by: 

( )

1

2 1

1 3
2 2 2 1

0 1
, ,
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00
, ,
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B B f x
b x x kx

τ

   
= =   −   

  
= = =    − −   

 (8)

In the dynamic model, there are two types of  inputs: 
the control ( )u , which can be manipulated by the control 
actuator, and the disturbance ( )d , which represents external 
influences on ship motion.  The two state variables are 
rewritten in the state-space representation form,

1 2
3

2 1 1 2 2 2 2 1

x x
x x b x b x x kx d u
=

 = − − − + +





(9)

From Eq. (9), 2x is considered to be a virtual control 
input for 1x . To make 1x  exponentially converge to zero, 
the desired value for 2x  is chosen at 2 1 1dx xγ= − , 
where 1γ is a positive constant. Consequently, 2 2dx x→  
would yield the solution 1

1 1 1(0) t
dx x x e γ−→ = . We declare 

2 2 2 2 1 1dz x x x xγ= − = +  as the tracking error of state 2x  
and define a positive definite (P.D.) The Lyapunov function 
is as follows:

2 2
1 1 2

1 1
2 2

V x z= +  (10)

Then the derivative of 1V  is given as:

2
1 1 1 2 2 1 1

3
2 1 1 2 1 2 2 2 2 1(2 )

V x x z z x
z x x b x b x x kx d u

γ

γ

= + = −

+ + − − − + +



 

 (11)

As 2z  should be asymptotically stable, 1V  is expected 
to be a negative definite (N.D.) function. If the disturbance 
is well-defined, the control input can be given as follows:

3
1 1 2 1 2 2 2 2 1 2 2( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −  (12)

where 2γ  is a positive constant, resulting in a P.D. function 
2 2

1 1 1 2 2V x zγ γ= − − . However, since the amplitude and 
frequency of disturbance are hardly recognised, the control 
input cannot be defined as Eq. (12). In fact, the control input 
is dependent on the estimated value d̂  instead of d , so the 
controller in Eq. (12) should be rewritten as: 

3
1 1 2 1 2 2 2 2 1 2 2

ˆ( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −  (13)

which would yield

2 2
1 1 1 2 2 2

ˆ( )V x z z d dγ γ= − − + −  (14)

The problem is to make an estimation d̂  that eliminates 
the term 2

ˆ( )z d d− . In general, four critical features should 
be determined, to define a sinusoidal signal completely, in 
terms of offset, amplitude, frequency, and phase. Assuming 
that ˆ ˆ̂̂( ) cos( ) sin( )od F a bτ τ τ= + Ω + Ω , where ˆ ˆ̂̂( ) cos( ) sin( )od F a bτ τ τ= + Ω + Ω is the 
estimated offset, Ω̂  is the estimated frequency, 

2 2
F̂ a b= + 

is the estimated amplitude, and ˆ arctan ( / )b aψ =   is the 
estimated phase. The following subsections will present an 
adaptive mechanism to update those components.
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Estimation for frequency

Let us introduce a second-order filter for the disturbance, 
as shown in Eq. (15),

0
2

1 2

( ) ( )s d s
s s

λ
ξ

λ λ
=

+ +  (15)

where 0 1, ,λ λ and 2λ  are positive constants that make 
2

1 2( )s s sλ λΛ = + +  a Hurwitz polynomial. Neglecting 
the initial conditions, it is simple to obtain the relation as 
follows:

2( ) ( ) ( ) ( )t t t tξξ ξ ξ ε= −Ω = Θ +    (16)

where ( )tξ  and ( )tξ  are derivatives of the output 
variable of the filter (15). Triple differentiation of ( )tξ  
gives 2 2( ) ( ) ( )t t tξ ξξ ε ε−Ω +Ω +

  , in which ( )tξε = 
= 2 ( ) ( )t tξ ξε εΩ +   is the exponential damped function 
with exponential damped derivatives defined by non-zero 
initial conditions [14]; 2Θ = −Ω  is a constant parameter. 
The updated law for the identification of Θ , including the 
frequency Ω  [8], is as follows:

3

2 2
3 3

ˆ̂

ˆ

ˆ
χ γ ξξ

χ γ ξ γ ξ

Ω = Θ
Θ = +
 = − Θ −




 



 (17)

where Ω̂  is an estimated frequency Ω and Θ̂ is an 
estimated unknown parameter Θ . The estimated error 

ˆΩ = Ω−Ω  is guaranteed to converge to zero and is 
bounded by a decaying exponent ( )tΩ ( )t≤ Θ 0

0
te βρ −≤ , 

where 0ρ  and 0β  are positive numbers [14]. The derivative of 
the estimated error ˆΘ = Θ−Θ  can be proved with a positive 
constant 3γ  as follows:

2
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= − − −
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

    

  
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 (18)

The P.D. Lyapunov function is 2 1
1
2

TV = Θ Γ Θ  , where 
1Γ  is a symmetric P.D. matrix. Using the result in Eq. (18), 

the following can be obtained:

2
2 1 1 3 3 1

2 2
3 2 3 1

( )
1 0
2

T TV

V

ξ

ξ

γ ξ γ ξ ε

γ ξ γ ε

= Θ Γ Θ = Θ Γ − Θ − Γ Θ

= − + Γ ≤

      



 (19)

It is clear from Eq. (19) that  is a  non-increasing 
function and, hence, 2V  is bounded. According to Barbalat’s 
Lemma, 2 0V →  as t →∞ , which also leads to 0Ω→ . 
Consequently, the updated law in Eq. (17) is proven to estimate 
the frequency Ω̂ →Ω  of the sinusoidal signal.

Estimation for offset, amplitude, and phase

To estimate the rest of the parameters, the disturbance is 
calculated as follows:

( ) ( )Td t tθ ϕ=  (20)

where [ ]ToF a bθ =  is a vector of unknown constants 
and [ ]( ) 1 cos( ) sin( ) Tt t tϕ = Ω Ω  is the regression vector [9]. 
Replacing into Eq. (14) gives

2 2 2 2
1 1 1 2 2 2 1 1 2 2 2

ˆ( )T T TV x z z x z zγ γ θ ϕ θ ϕ γ γ θ ϕ= − − + − = − − +   (21)

where ˆθ θ θ= −  is the estimated error. With a P.D Lyapunov 
function 

1
3 1 2

1
2

TV V θ θ−= + Γ , where 2Γ  is a symmetric P.D 
matrix, the derivative 3V  is given as:



1 2 2 1
3 1 2 1 1 2 2 2 2

2 2 1
1 1 2 2 2 2

ˆ

ˆ( )

T T T

T

V V x z z

x z z

θ θ γ γ θ ϕ θ θ

γ γ θ ϕ θ

− −

−

= + Γ = − − + − Γ

= − − + −Γ




   





 (22)

To make 3V  an N.D. function, the update law should be 
chosen as follows:

2 2
ˆ zθ ϕ= Γ

 (23)

Finally, with the chosen update law, 2 2
3 1 1 2 2V x zγ γ= − −  

is an non-increasing function and 3V  and 1V  are bounded, 
hence 1 0x →  and θ̂ θ→  as t →∞ . To sum up, the 
necessary parameters for estimating sinusoidal disturbance 
and controller have been explained. In the next section, 
simulation results illustrate the system’s dynamic behaviour 
under backstepping control with an adaptive mechanism, 
as well as the estimation process, to formulate the external 
disturbance.
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Non-periodic roll prediction using RC

In contrast to conventional RNN, only the readout weight 
is trained. The input weight ( inW ), feedback weight (

fbW ), 
and adjacency matrix ( resW ) are fixed and chosen randomly. 
In some simple applications, where feedback response is not 
required, 

fbW  can be omitted. Based on similar effects on 
reservoirs, inW  and 

fbW  are primarily constructed in the 
same way. Both input and feedback responses can be used 
to generate output [15]. For a reservoir with N  neurons, 
the structure of a general ESN, having N  reservoir states, 
is illustrated in Fig. 1. The linear mapping input-output at 
a perceptron is presented in Fig. 1.

Fig. 1. Generic sketch of the RC framework

According to [15], the complete form of the updated 
equation for the reservoir state vector ( )r n  is defined as 
follows:

( ) tanh ( ) ( 1)
( )

in
in res fb out

in

b
r n W W r n W y n

u n
  

= + + −  
  

  (24)

( ) (1 ) ( 1) ( )r n r n r nα α= − − +   (25)

where ( ) I
inu n ∈ℜ  is the input fed to the reservoir at time 

step n  ( 1,...,n T= ); T  is a data point in the training 
dataset; inb  is the bias of the reservoir’s input; ( ) Nr n ∈ℜ
is a vector of a reservoir neuron; ( )r n  is its updated value; and 

( ) O
outy n ∈ℜ  is a vector of network outputs [13]. Weight 

matrices inW , resW , and fbW  are defined as the input weight 
matrix, the adjacency matrix describing the connection of the 
nodes in the reservoir, and the feedback weight matrix from 
the output back to the reservoir, respectively. α  is the leaking 
rate ( 0 1α≤ ≤ ). Without the leaking term, ( ) ( )r n r n≡  

for the case where 1α = , ( ) tanh( )f x x=  is the activation 
function. The weighted sum of the input states is then fed 
through an activation function to give the final output. The 
most basic activation function is the step function. However, 
smooth (sigmoid) functions are mostly preferred, such as 
the hyperbolic tangent function tanh( )x . Eqs. (24) and (25) 
indicate that the reservoir state ( )r n  will be updated based on 
the current input ( )inu n  and the feedback from the previous 
sample ( 1)outy n . The feedback term can be omitted in 
some tasks, where the feedback state is unnecessary. The 
output state ( )outy n  of the reservoir at the sampling point 
can be calculated from the linear combination between the 
reservoir state and input state, as below [15]: 

,

( ) ( )
( )

out

out out in

b
y n W u n

r n

 
 =  
  

 (26)

where outW  is the weight matrix 
from the reservoir to the output 
and outb  is the bias of the reservoir’s 
output. In the training procedure, 
the input data is the reference 
data (teacher data) and the actual 
output of the reservoir is replaced 
by the desired output [15]. Within 
a training duration of samples, 
all input and output data are 

collected into matrices ( )N TY × and ( )N TX × , by concatenating 
T columns. Regarding Eq. (26), the linear relation between 
Y  and X  can be written in matrix form, as follows:

outY W X=  (27)

At the end of the training phase, the trained weight matrix 
outW  can be analytically computed using ridge regression.

1( )T T
outW YX XX Iν −= +  (28)

where ν  is the regularisation constant added to avoid 
overfitting and I  is the identity matrix. After the training 
phase, the output weight outW  is computed and can be used 
for continuous computation. The actual output of the iteration 
can be reapplied as input for the next iteration. The teacher 
data is now unnecessary because the reservoir computer can 
generate prediction data. As presented in Eq. (26), the actual 
output of the reservoir can be obtained.
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SIMULATION RESULTS

Dynamic analysis of non-periodic roll 
motions

In this section, finding the chaos using dynamic theory, 
stabilisation, and the parametric identification of unknown 
periodic disturbances are discussed in sequence. Numerical 
simulations are performed to reveal the effectiveness of the 
proposed mechanism. The main parameters of the chosen 
model, from a marine vessel, [7] show strong nonlinear 
characteristics such as chaos, limit cycles, and resonance 
under periodic disturbances [16]. For the numerical 
simulation, the initial condition (IC) of the roll dynamics is 
= [0.5 (rad) 0.2 (rad/s)].

First, we analysed the non-periodic roll motions before 
parametric estimation and stabilisation. The bifurcation 
diagram easily recognises this phenomenon, representing 
the qualitatively sudden change as a varied parameter. When 
a small perturbation causes the qualitative responses in the 
system, it is regarded as unstable, whereas the opposite case 
is stable. This roll model shows rich dynamic behaviours, 
depending on the initial conditions. For example, a strange 
attractor exhibits sensitivity to initial conditions.

Fig. 2. Bifurcation diagram using the second iterative method

The ramp-up and ramp-down parts of the graph are 
necessary for observing the bistable region [17]. Fig. 2 shows 
the stable and unstable rolling motions, based on the second 
iterative method, where 2 2

1 2( )r x x= +  is the distance from 
the origin in the Poincare map [18]. The ramp-up ( upr , in 
blue) and ramp-down ( downr , in red) parts enable checking 
of the bistable region. F  is the forcing amplitude of wave 
excitations, with respect to roll mode after dividing inertia 
terms. A ship’s motion is stable, with periodic responses, 
until F  reaches a value of 0.2. However, the branches in 
the diagram start to split (bifurcate) into two new branches 
from the point F = 0.2, and the ship becomes unstable. Such 
unstable regions are more dominant, as the forcing amplitude 
reaches 1. Period-doubling routes to chaos and period-
undoubling routes to single branches are clearly observed 
when the F  increases. With a slight rise in forcing amplitude, 
the periodic windows, which are stable regions, can be seen 
among the chaotic clouds of dots. 

Fig. 3(a) illustrates the Lyapunov exponents (LEs) of the 
uncontrolled systems, demonstrating a chaos system. It is 
a measure of predictability and sensitivity for controlling 
parameter changes. The exponential growth in iLE  can be 
estimated as follows:

2 2
( ) (0) iLE t

i it e∆ ≈ ∆  , 1 i n≤ ≤              (29)

where 
2

(0)i∆  denotes the initial separation, with a chaotic 
motion of 0iLE >  making behaviour unpredictable, whereas 

0iLE ≤  for regular motion. The stretching and contracting of 
attractors can be defined with LEs, whose positive values signify 
chaos [19]. The LE measures the mean rate of exponential 
divergence of nearby trajectories, which gives information 
on the growth rate of IC. The positive LEs ( 1LE , blue line) 
show that the system is sensitive to IC and their trajectories 
diverge with time, while negative LEs ( 2LE , red line) indicate 
a tendency for convergence. A positive LE usually indicates 
that the system is chaotic. The larger the exponent, the more 
unstable the system. The negative LEs mean that the system 
is stable. The negative LEs are characteristic of dissipative 
systems, such that the roll system exhibits asymptotic stability; 
the more negative the exponent, the greater the stability [17]. 

a) b)

Fig. 3. Dynamic analysis of the uncontrolled system in the case of IC [0.5 (rad) 0.2(rad/s)]: (a) Lyapunov exponents; (b) Poincare section
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Fig. 3(b) shows where the Poincare section shows 
a deterministic system’s uncontrolled roll, with no random 
or noisy inputs; it appears to be non-periodic. The main 
parameters are adopted in a marine model [7]. The Poincare 
map reduces the n-dimensional flow to a  1n −  dimensional 
map. All trajectories of an n-dimensional system start on 
the 1n −  dimensional surface of a section flowing through 
it. Such reduced dimensionality makes it possible to preserve 
periodic and quasi-periodic orbits. To make an autonomous 
flow in a torus, a third value tθ = Ω  can be considered from 
Eq. (6) without control. A trajectory flowing around a torus 
with a period ( 2 /T π= Ω ) leads to the Poincare mapping 
of a  0θ θ=  plane. Picking up a cross-section of roll angle 
and rate, the Poincare map is mainly varied according to 
the strength of the forcing function. The manifolds become 
tangential and intersect transversely when F  increases. If 
a trajectory in the phase plane intersects itself repeatedly, 
then a strange attractor and fractals may be observed in the 
roll dynamics [20-22]. 

Parametric identification of periodic 
disturbances

Next, the simulations for the proposed backstepping control 
are conducted. The filter and controller design parameters 
are set as 0 1 2 1 2 3( , , , , , )λ λ λ γ γ γ = (0.15, 2, 8, 5, 5, 2.5). The 
updated rate matrix is chosen as 2 (2,1.2,1.2)diagΓ =  and 
the IC is ˆ̂( (0), (0), (0), (0))oF a b Ω = (0.2, 0.3, 0.1, 0). Figs. 4 
and 5 demonstrate the estimation process for the frequency, 
offset, amplitude, and phase, respectively. In contrast, Fig. 5 (a) 
verifies a combination of the above results to form a complete 
estimation for the sinusoidal disturbance. All parameters of 
periodic disturbances can be precisely estimated. Suppression 
of the roll angle and rate is achieved using the backstepping 
control, as seen in Figs. 5(b) and 5(c). Finally, filtered signals 
are illustrated in Fig. 5(d), according to the updated law in 
Eq. (17).

(a) (b)

(c) (d)

Fig. 4. Test results of estimation (1): (a) frequency; (b) offset; (c) amplitude; (d) phase
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(a) (b)

(c) (d)

Fig. 5. Test results of estimation (2): (a) periodic disturbances; (b) control inputs; (c) suppression of two states; (d) filtered signals

Ship roll prediction using RC

Finally, the non-periodic rolling motions are predicted via 
RC. Such an ESN algorithm is used to forecast the reference 
data of roll angle and roll rate for the training and prediction 
processes of the reservoir. After the initial input weight ( inW
) and feedback weight (

fbW ) are fixed, the predicted process 
is performed from the computation of the trained reservoir. 
In fact, the prediction performance strongly depends on 
the parameter values, as listed in Table 1. A reservoir size (
N ), related to the memory capacity, is selected as N = 600, 
where σ  is a hyper-parameter for adjusting the performance. 
The input range [ , ]σ σ−  indicates the dispersion level 
of components in the weight matrices ( inW , 

fbW ). The 
adjustment of the leaking rate (α ) indicates the level of 
dependence of the network on past information. The lower the 
α  value, the more dependent it is on past information. The 
spectral radius ( ρ ) is related to the magnitude of the largest 
eigenvalue of internal weight ( resW ) and performance. As α  
increases, the wider it spreads on the weight matrices. The 
author decided that α  should not be too low because it will 
inflict an amplitude value on input and feedback responses.

Tab. 1. Main parameter values for the prediction model
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The prediction performance of quantitative and qualitative 
measures, such as error criteria and non-periodic orbits in 
future states, is presented. At first, the mean squared error 
(MSE) is employed to evaluate the prediction performance, 
which measures the average of the squares of the errors. It 
shows a positive value that decreases, as the error approaches 
zero, and is defined as follows:

MSE = 
2

1

1 ˆ( )
n

T T
n

Y Y
n =

−∑                        (30)
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where TY  and T̂Y  describe the actual and predicted values 
of roll responses in the time period, respectively. 

The numerical tests were conducted based on several 
scenarios: Case 1 ( TT = 160, TP = 40), Case 2 ( TT = 200, PT
= 400), Case 3 ( TT = 200, TP = 800), and Case 4 ( TT = 400, 

TP = 800), where TT  and TP  mean the times of training and 
prediction, as listed in Table 2. The indices show that the 
results of Case 1, Case 2, and Case 4 are better than Case 
3. When PT  increases, the values of MSE increase as well, 
and prediction performance is degraded over time. Then, 
a proper PT  should be adjusted accordingly. The ratio value of 

/ 0.5T TT P =  is necessary for this simulation. Interestingly, 
the results of RC slightly vary at every simulation. The test 
results of each case are changeable, according to the reservoir 
size or the other parameters in Table 1. 

Tab. 2. Prediction accuracies using performance index (MSE)
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1( )x φ 0.3336 0.8659 1.0768 0.8912

2 ( )x φ 0.2342 0.6809 0.8946 0.6383

(a) (b)

Fig. 6. Prediction results (Case 1): (a) roll angle; (b) roll rate

(a) (b)

Fig. 7. Prediction results (Case 2): (a) roll angle; (b) roll rate
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(a) (b)

Fig. 8. Prediction results (Case 3): (a) roll angle; (b) roll rate

(a) (b)

Fig. 9. Prediction results (Case 4): (a) roll angle; (b) roll rate

The main purpose of the RC is to predict chaotic time 
series behaviours. Figs. 6 to 9 depict the qualitative features of 
prediction results based on the training time TT  of 160-400 
seconds. Then, the model performance is demonstrated by 
increasing the prediction time TP  by 40-800 seconds. Figs. 6 
, 7, and 9 show that the non-periodic pattern is clear for cases 
where T TT P>  and T TT P< . However, chaotic time series 
prediction is obscure, due to the insufficient TT , as seen in 
Fig. 8. Chaotic features become evident in Fig. 9, by increasing 

TT . Thus, prediction performance can be secured in the case 
of / 0.5T TT P ≥ , by adjusting the corresponding TT  and TP
. As a result, the RC process shows good performance, even 
for chaotic time series prediction in future states, although 
it lacks predictability [6]. 

CONCLUSIONS

One can easily imagine that the marine environment is not 
easy for humans and marine vessels to deal with. This paper 
has investigated two topics: how to estimate the parameters 
of unknown ocean disturbances and how to control a ship’s 
dynamic behaviour in future states. The rolling behaviour 
of marine vessels shows non-periodic responses, as well 
as regular responses. Sometimes, the complicated rolling 
motions are demonstrated by strong nonlinearities or 
forcing amplitudes of extreme wave excitation. Specifically, 
the complex behaviours of a rolling system are investigated 
by nonlinear analyses, such as bifurcation diagrams, the 
Lyapunov exponent (LE), and Poincaré maps. The chaos is 
not a casual phenomenon but, rather, it yields particular 
responses. It is an aperiodic, long-term motion that 
exhibits sensitive dependence on the initial conditions in 
a deterministic system. The nonlinear rolling motion shows 
a strange attractor, depending on the initial conditions. The 
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second iterative method of the bifurcation diagram displays 
the unstable qualitative responses in the ship’s roll due to 
slight changes in the parameters, such as the initial conditions 
or forcing amplitudes. Based on the magnitude of the wave 
excitations, rich dynamic responses can be observed, such as 
periodic (stable, regular) routes to chaos (reverse doubling), 
and chaos at the end. In fact, a ship under excessive rolling 
motions may result in a capsized state with no other recovery 
oscillations until it is in an upright position. Since there is no 
response amplitude operator (RAO), including wave height, 
in this paper, it is a limitation that marine vessels do not 
recognise the precise timing of chaos or capsize in sea states. 
It is difficult for ships’ crews to deal with the abrupt changes 
in the rolling motions.

Therefore, this paper has investigated rolling motion 
predictions for marine vessels with machine-learning methods 
and parameter estimation of unknown disturbances. All 
parameters, such as frequency, offset, amplitude, and phase, 
are precisely estimated based on the adaptive mechanism 
without any observers. The linear second-order filters and 
parameter estimation errors are employed to achieve global 
exponential convergence. Also, the backstepping method 
is realised, to regulate the roll angle and rate, in the case 
of severe disturbances to marine vessels. Moreover, the RC 
process revealed its predictive performance in terms of the 
future states’ chaotic time series behaviours. This may help to 
support the lack of predictability by LEs [6]. Unfortunately, 
prediction performance is highly dependent on the parameter 
values selected by the designer’s empirical trials. Interestingly, 
the results of RC vary slightly in every simulation. According 
to the reservoir size, practitioners might find the optimum 
values of parameters. However, the method presented may 
help them obtain a  satisfactory conclusion. Insufficient 
training time causes the obscure prediction of chaotic orbits. 
Thus, prediction criteria and the prediction and training time 
ratio are necessary. This paper suggests a ratio value of greater 
than 0.5 but it has a limitation of slow convergence in transient 
performance; however, it shows less oscillation due to the 
second-order filtered signals [9]. Finding the proper values to 
adjust to fast convergence speed and transient performance 
is necessary. To make a safe and robust system of marine 
vessels under severe sea environments, an adversarial attack 
might be considered, based on adaptive control with machine 
learning skills or quantum RC in future research. 
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