Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 4 | 1151--1161
Tytuł artykułu

Application of residual learning to microseismic random noise attenuation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microseismic data which are recorded by near-surface sensors are usually drawn in strong random noise. The reliability and accuracy of arrivals picking, source localization, microseismic imaging and source mechanism inversion are often afected by the random noise. Random noise attenuation is important for microseismic data processing. We introduce a novel deep convolutional neural network-based denoising approach to attenuate random noise from 1D microseismic data. The approach predicts the noise (the diference between the noisy microseismic data and clean microseismic data) as output instead of directly outputing the denoised data that is called residual learning. With the residual learning strategy, the approach removes the clean data in the hidden layers. In other words, the approach learns from the random noise prior instead of an explicit data prior. Then, the denoised data are reconstructed via subtracting noise from noisy data. Compared with other commonly used denoising methods, the proposed method performs its efectiveness and superiority by experimental tests on synthetic and real data. The model is trained with synthetic data and applied on real data. The results show that random noise in the synthetic and real data can been removed. However, some noise still remains in the real data case. The reason for that may be the approach can only remove random noise nor the correlated noise. Other methods are needed to be applied to remove the correlated noise to obtain higher performance after that approach when the real microseismic data which contain both correlated noise and random noise.
Wydawca

Czasopismo
Rocznik
Strony
1151--1161
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Haidian, Beijing 100083, China, zhengjing8628@163.com
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Haidian, Beijing 100083, China
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Haidian, Beijing 100083, China
autor
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Haidian, Beijing 100083, China
autor
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Haidian, Beijing 100083, China
Bibliografia
  • 1. Chen Y (2018a) Automatic microseismic event picking via unsupervised machine learning. Geophys J Int 212(1):88–102
  • 2. Chen Y (2018b) Fast waveform detection for microseismic imaging using unsupervised machine learning. Geophys J Int 215(2):1185–1199
  • 3. Chen Y (2018c) Non-stationary least-squares complex decomposition for microseismic noise attenuation. Geophys J Int 213(3):1572–1585
  • 4. Curtis A, Michelini A, Leslie D, Lomax A (2004) A deterministic algorithm for experimental design applied to tomographic and microseismic monitoring surveys. Geophys J Int 157(2):595–606
  • 5. Forghani-Arani F, Willis M, Haines SS, Batzle M, Behura J, Davidson M (2013) An effective noise-suppression technique for surface microseismic data. Geophysics 78(6):KS85–KS95. https://doi.org/10.1190/geo2012-0502.1
  • 6. Han J, Baan MVD (2015) Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding. Geophysics 80(6):KS69–KS80
  • 7. Huang W, Wang R, Li H, Chen Y (2017) Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring. Sci Rep 7(1):11996
  • 8. Kim Y, Hardisty R, Marfurt KJ (2019) Seismic random noise attenuation in f-x domain using complex-valued residual convolutional neural network. In: SEG Technical Program Expanded Abstracts 2019, Society of Exploration Geophysicists, pp 2579–2583
  • 9. Kushnir A, Varypaev A, Dricker I, Rozhkov M, Rozhkov N (2014) Passive surface microseismic monitoring as a statistical problem: location of weak microseismic signals in the presence of strongly correlated noise. Geophys Prospect 62(4):819–833
  • 10. Kühn D, Albaric J, Harris D, Oye V, Hillers G, Brenguier F, Ohrnberger M, Braathen A, Olaussen S (2014) Microseismic monitoring of a future co22 storage site in the arctic (svalbard)-suppression and utilization of seismic noise. In: EGU general assembly 2014
  • 11. Le Calvez J, Malpani R, Xu J, Stokes J, Williams M (2016) Hydraulic fracturing insights from microseismic monitoring. Oilfield Rev 28(2):16–33
  • 12. Li H, Yang W, Yong X (2018) Deep learning for ground-roll noise attenuation. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, pp 1981–1985
  • 13. Liu D, Wang W, Chen W, Wang X, Zhou Y, Shi Z (2018) Random noise suppression in seismic data: what can deep learning do? In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, pp 2016–2020
  • 14. Lv H (2019) Noise suppression of microseismic data based on a fast singular value decomposition algorithm. J Appl Geophys 170:103831
  • 15. Mandelli S, Lipari V, Bestagini P, Tubaro S (2019) Interpolation and denoising of seismic data using convolutional neural networks. arXiv:190107927
  • 16. Maxwell SC, Rutledge J, Jones R, Fehler M (2010) Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75(5):75A129–75A137
  • 17. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
  • 18. Rodriguez IV, Bonar D, Sacchi M (2012) Microseismic data denoising using a 3c group sparsity constrained time-frequency transform. Geophysics 77(2):21
  • 19. Si X, Yuan Y (2018) Random noise attenuation based on residual learning of deep convolutional neural network. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, pp 1986–1990
  • 20. Siahkoohi A, Louboutin M, Kumar R, Herrmann FJ (2018) Deep-convolutional neural networks in prestack seismic: two exploratory examples. In: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, pp 2196–2200
  • 21. Usher PJ, Angus DA, Verdon JP (2013) Influence of a velocity model and source frequency on microseismic waveforms: some implications for microseismic locations. Geophys Prospect 61(s1):334–345
  • 22. Verdon J, Kendall JM, White D, Angus D (2011) Linking microseismic event observations with geomechanical models to minimise the risks of storing co2 in geological formations. Earth Planet Sci Lett 305(1–2):143–152
  • 23. Wang H, Zhang Q, Zhang G, Fang J, Chen Y (2020) Self-training and learning the waveform features of microseismic data using an adaptive dictionary. Geophysics 85(3):1–61
  • 24. Zhang C, van der Baan M (2018) Multicomponent microseismic data denoising by 3d shearlet transform. Geophysics 83(3):A45–A51
  • 25. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017a) Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155
  • 26. Zhang M, Liu Y, Chen Y (2019) Unsupervised seismic random noise attenuation based on deep convolutional neural network. IEEE Access 7:179810–179822
  • 27. Zhang Z, Rector JW, Nava MJ (2017b) Simultaneous inversion of multiple microseismic data for event locations and velocity model with Bayesian inference. Geophysics 82(3):KS27–KS39
  • 28. Zheng J, Lu JR, Jiang TQ, Liang Z (2017) Microseismic event denoising via adaptive directional vector median filters. Acta Geophys 65(1):47–54
  • 29. Zheng J, Shen S, Jiang T, Zhu W (2020) Deep neural networks design and analysis for automatic phase pickers from three-component microseismic recordings. Geophys J Int 220(1):323–334
  • 30. Zhu W, Mousavi SM, Beroza GC (2019) Seismic signal denoising and decomposition using deep neural networks. IEEE Trans Geosci Remote Sens 57(11):9476–9488
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9535ad2a-be5f-484a-87ca-265e3bbe7b6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.