Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | R. 27, nr 1 | 14--31
Tytuł artykułu

Wpływ cementu na charakterystykę środowiskową wyrobów budowlanych na przykładzie klejów cementowych - składników złożonych systemów izolacji cieplnej ETICS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
The influence of cement on the environmental performance of construction products on the example of cementitious adhesives - External Thermal Insulation Composite Systems [ETICS] components
Języki publikacji
PL EN
Abstrakty
PL
Sektor budowlany należy do gałęzi gospodarki o istotnym wpływie na środowisko. Wykorzystuje ogromne ilości zróżnicowanych surowców, wytwarza znaczne ilości odpadów i emituje znaczne ilości gazów cieplarnianych do atmosfery. Redukcja zużycia energii i emisyjności budynków, dekarbonizacja istniejących źródeł energii oraz optymalizacja wykorzystania energii odnawialnej, a także zminimalizowanie śladu węglowego materiałów i robót budowlanych to konieczność, aby przeciwdziałać zmianom klimatycznym. To również plan minimum dla zapewnienia zrównoważonego rozwoju społecznego. Dotychczasowa polityka środowiskowa w sektorze budowlanym jest niewystarczająca a wynika to, przede wszystkim, z obecnie obowiązujących regulacji prawnych. Ocena wyrobów budowlanych w zakresie siódmego wymagania podstawowego, dotyczącego zrównoważonego wykorzystania zasobów naturalnych, jest dobrowolna, a co za tym idzie niemal zawsze pomijana. Narzędzia do oceny jakimi są m.in. deklaracje środowiskowe III typu [Type III Environmental Product Declarations - EPDs] wyrobów budowlanych nie są powszechnie stosowane. Co więcej, dokumenty te są słabo rozpoznawalne wśród konsumentów, co świadczy o ciągle niewystarczającej świadomości ekologicznej. Dodatkowo, pojawiające się różnice wartości wskaźników oddziaływania środowiskowego określanych w deklaracjach środowiskowych III typu, wynikające ze zróżnicowanego podejścia w wyznaczaniu granic systemu czy jakości dostępnych danych generycznych, nie sprzyjają prawidłowemu rozwojowi wiedzy o wpływie materiałów budowlanych na środowisko. W niniejszej pracy przeprowadzono analizę oddziaływania środowiskowego cementu będącego składnikiem zapraw klejących, stosowanych w złożonych zestawach izolacji cieplnej ETICS. Badania prowadzono w zakresie czterech wskaźników, tj. globalnego współczynnika ocieplenia [GWP], potencjału zakwaszenie gleby i wody [AP], potencjału eutrofizacji [EP] oraz potencjał tworzenia ozonu troposferycznego [POCP].
EN
The construction sector is one of the branches of the economy with a significant impact on the environment. It uses a vast amount of different raw materials. Also, it produces substantial amounts of waste and emits high amounts of greenhouse gases into the atmosphere. Reducing the energy consumption and emissivity of buildings, decarbonizing existing energy sources, optimizing the use of renewable energy, and minimizing the carbon footprint of materials and construction works are imperative to counteract climate change. It is also a minimum plan for ensuring sustainable social development. The current environmental policy in the construction sector is insufficient and it results from the legal regulations currently in force. Assessment of construction products for the seventh basic requirement, sustainable use of natural resources, is voluntary and almost always neglected. Assessment tools, such as Type III Environmental Product Declarations [EPDs] for construction products, are not widely used. Moreover, these documents are poorly recognizable among consumers, proving that there is still insufficient environmental awareness. In addition, the emerging differences in environmental impact indicators values specified in environmental declarations, resulting from using differentiated approaches in setting system boundaries or the quality of available generic data, do not support the proper development of knowledge about the impact of construction products on the environment. In this work, an analysis of the environmental impact of cement, which is a component of adhesives used in the External Thermal Insulation Composite System [ETICS], was carried out. The study on four indicators, i.e., global warming potential [GWP], soil and water acidification potential [AP], eutrophication potential [EP], and tropospheric ozone formation potential [POCP], was performed.
Wydawca

Czasopismo
Rocznik
Strony
14--31
Opis fizyczny
Bibliogr. 93 poz., il., tab.
Twórcy
  • Research and Development Center, Atlas sp. z o.o., Lodz, Poland
  • Research and Development Center, Atlas sp. z o.o., Lodz, Poland
  • Building Research Institute (ITB), Warsaw, Poland
Bibliografia
  • 1. U Thant Sithu. Resolution no. 2398 - The problems of human environment. United Nations. 1969. https://digitallibrary.un.org/record/657791 (accesed 15.12.2021)
  • 2. European Commission, Action Climate. Brussels, Belgium. https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_pl (accessed 15.12.2021).
  • 3. European Commission. The European Green Deal. Brussels, Belgium, (2019).
  • 4. European Academies Science Advisory Council. Decarbonisation of buildings: for climate, health and jobs. Halle, Germany, (2021). https://easac.eu/publications/details/decarbonisation-of-buildings-for-climatehealth-and-jobs/ (accessed 15.12.2021).
  • 5. European Environment Agency. Trends and projections in Europe 2021. Copenhagen, Denmark, (2021). https://www.eea.europa.eu/publications/trends-and-projections-in-europe-2021 (accessed 15.12.2021).
  • 6. A. Kylili, P. A. Fokaides, Policy trends for the sustainability assessment of construction materials: A review. Sustain. Cities Society 35, 280-288 (2017). https://doi.org/10.1016/j.scs.2017.08.013.
  • 7. A. Andabaka, M.B. Sertić, Promoting sustainable development via public procurement: Is the European Union Leading by example?. In Proceedings of FEB Zagreb International Odyssey Conference on Economics and Business 2(1), 721-739 (2020). Zagreb, Croatia.
  • 8. X. Zhong, M. Hu, S. Deetman, B. Steubing, H. X. Lin, G. A. Hernandez, C. Harpprecht, Ch. Zhang, A. Tukker, P. Behrens, P. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nature Commun. 12(1), 1-10 (2021). https://doi.org/10.1038/s41467-021-26212-z.
  • 9. J. Anderson, A. Moncaster, Using an analysis of concrete and cement EPD: Verification, selection, assessment, benchmarking and target setting. Acta Polytech. 00(0), 1-7, (0000). Accepted manuscript: http://oro.open.ac.uk/81389/.
  • 10. T. Lützkendorf, The role of carbon metrics in supporting built-environment professionals. Buildings Cities 1(1), 662-672 (2020). http://doi.org/10.5334/bc.73.
  • 11. B. Huang, X. Gao, X. Xu, J. Song, Y. Geng, J. Sarkis, T. Fishman, H. Kua, J. Nakatani, A life cycle thinking framework to mitigate the environmental impact of building materials. One Earth 3(5), 564-573 (2020). https://doi.org/10.1016/j.oneear.2020.10.010.
  • 12. M. de Klijn-Chevalerias, S. Javed, The Dutch approach for assessing and reducing environmental impacts of building materials. Build. Environ. 111, 147-159 (2017). https://doi.org/10.1016/j.buildenv.2016.11.003.
  • 13. Regulation (EU) No. 305/2011 of the European Parliament and of the Council. https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=celex%3A32011R0305 (accessed 15.12.2021).
  • 14. S. Wall, CE Marking of Construction Products - Evolution of the European Approach to Harmonisation of Construction Products in the Light of Environmental Sustainability Aspects. Sustainability 13(11), 6396 (2021). https://doi.org/10.3390/su13116396.
  • 15. European Committee for Standardization (CEN). EN 15804:2012. Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. Brussels, Belgium, (2012).
  • 16. European Commission. Product Environmental Footprint (PEF) Guide. Consolidated Version. 2012. Ispra. Italy
  • 17. J. Anderson, ConstructionLCA’s 2022 Guide to Environmental Product Declarations (EPD). ConstructionLCA. 2022. https://infogram.com/constructionlcas-2022-guide-to-epd-1h8n6m3kwp8ej4x?live (accessed 28.02.2022).
  • 18. J. Anderson, A. Moncaster, Embodied carbon of concrete in buildings, Part 1: Analysis of published EPD. Build. Cities 1(1), 198-217 (2020). http://doi.org/10.5334/bc.59.
  • 19. B. Waldman, M. Huang, K. Simonen, Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Build. Cities 1(1) 625-636 (2020). http://doi.org/10.5334/bc.31.
  • 20. A. Passer, S. Lasvaux, K. Allacker, D. De Lathauwer, C. Spirinckx, B. Wittstock, D. Kellenberger, F. Gschösser, J. Wall, H. Wallbaum, Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. Int. J. Life Cycle Assess. 20(9), 1199-1212 (2015). https://doi.org/10.1007/s11367-015-0926-3.
  • 21. E. Pedersen, A. Remmen, Challenges with product environmental footprint: a systematic review. Int. J. Life Cycle Assess. 27, 1-11 (2022). https://doi.org/10.1007/s11367-022-02022-3.
  • 22. V. Durão, J. D. Silvestre, R. Mateus, J. de Brito, Assessment and communication of the environmental performance of construction products in Europe: Comparison between PEF and EN 15804 compliant EPD schemes. Resour. Conserv. Recycl. 156, 104703 (2020). https://doi.org/10.1016/j.resconrec.2020.104703.
  • 23. B. M. Galindro, S. Welling, N. Bey, S. I. Olsen, S. R. Soares, S.-O. Ryding, Making use of life cycle assessment and environmental product declarations. A survey with practitioners. J. Ind. Ecol. 24, 965-975 (2020). https://doi.org/10.1111/jiec.13007.
  • 24. S. C. Andersen, H. F. Larsen, L. Raffnsøe, C. Melvang, Environmental product declarations (EPDs) as a competitive parameter within sustainable buildings and building materials. IOP Conf. Ser. Earth Environ. Sci. 323, 012145 (2019). https://doi.org/10.1088/1755-1315/323/1/012145.
  • 25. M. D. C. Gelowitz, J. J. McArthur, Investigating the effect of environmental product declaration adoption in LEED® on the construction industry: A case study. Procedia Eng. 145, 58-65 (2016). https://doi.org/10.1016/j.proeng.2016.04.014.
  • 26. T. Lützkendorf, Sustainability in Building Construction-A Multilevel Approach. IOP Conference Series: Earth and Environmental Science 290(1), 012004 (2019). https://doi.org/10.1016/j.proeng.2016.04.014.
  • 27. N. Reyes, B. Rodríguez, E. Wiegand, F. Zilic, M. Ramage, A. Bukauskas, R. Debnath, D. U. Shah, C. de Wolf, A. Koronaki, A. Gatoó, Y. Gin, Achieving zero carbon emissions in the construction sector: The role of timber in decarbonising building structures. Cambridge Open Engage (2021). https://doi:10.33774/coe-2021-hgd6q.
  • 28. J. Łapińska, I. Escher, G. Kądzielawski, P. Brzustewicz, Social activities for sustainable development in the cement industry in Poland-good practice. Cem. Wapno Beton 24(6), 462-470 (2019). https://doi.org/10.32047/cwb.2019.24.6.5.
  • 29. J. Łapińska, I. Escher, G. Kądzielawski, P. Brzustewicz, Environmental aspects of sustainable development in the cement industry: activities communicated by enterprises functioning in Poland. Cem. Wapno Beton 24(4), 267-275 (2019). htts://doi.org/10.32047/CWB.2019.24.4.2.
  • 30. I. Escher, P. Brzustewicz, Inter-organizational collaboration on projects supporting sustainable development goals: the company perspective. Sustainability 12(12), 4969 (2020). https://doi.org/10.3390/su12124969.
  • 31. C. R. Perera, L. W. Johnson, Understanding environmentally conscious behaviour through environmental identity. Highlights of Sustainability 1(1), 1-4 (2022). https://doi.org/10.54175/hsustain1010001.
  • 32. N. D. Jordan, How coordinated sectoral responses to environmental policy increase the availability of product life cycle data. Int. J. Life Cycle Assess. 26(4), 692-706 (2021). https://doi.org/10.1007/s11367-021-01873-6.
  • 33. S. Attia, M. C. Santos, M. Al-Obaidy, M. Baskar, Leadership of EU member States in building carbon footprint regulations and their role in promoting circular building design. IOP Conference Series: Earth and Environmental Science 855(1), 012023 (2021). https://doi.org/10.1088/1755-1315/855/1/012023.
  • 34. J. F. G. Timm, V. G. Maciel, A. Passuello, Green public procurement model for environmental assessment of constructive systems. International Journal of Construction Management, 1-11 (2021). https://doi.org/10.1080/15623599.2021.1920162.
  • 35. J. Michalak, B. Michałowski, Understanding of construction product assessment issues and sustainability among investors, architects, contractors, and sellers of construction products in Poland. Energies 14(7), 1941 (2021). https://doi.org/10.3390/en14071941.
  • 36. J. Michalak, B. Michałowski, Understanding sustainability of construction products: answers from investors, contractors and sellers of building materials. Sustainability 14(5), 3042 (2022). https://doi.org/10.3390/su14053042.
  • 37. J. Tomaszewska, Polish Transition towards Circular Economy: Materials Management and Implications for the Construction. Sector. Materials 13(22), 5228 (2020). https://doi.org/10.3390/ma13225228.
  • 38. International Energy Agency. Cement. Paris, France, (2021). https://www.iea.org/reports/cement (accessed 28.02.2022).
  • 39. Carbon Brief. Global CO2 emissions have been flat for a decade, new data reveals. London, Great Britain, (2021). https://www.carbonbrief.org/global-co2-emissions-have-been-flat-for-a-decade-new-data-reveals (accessed 28.02.2022).
  • 40. R. M. Andrew, Global CO2 emissions from cement production, 1928-2017. Earth System Science Data 10(4), 2213-2239 (2018). https://doi.org/10.5194/essd-10-2213-2018 (accessed 28.02.2022).
  • 41. M. Gawlicki, Belite in cements with low emission of CO2 during clinker formation. Cem. Wapno Beton 25(5), 348-357 (2020). https://doi.org/10.32047/CWB.2020.25.5.1.
  • 42. C. K. Sekhar, P. R. Kumar, The study of the microstructure of sustainable composite cement-based mortars. Cem. Wapno Beton 25(5), 390-403 (2020). https://doi.org/10.32047/CWB.2020.25.5.5.
  • 43. Z. Giergiczny, A. Król, M. Tałaj, K. Wandoch, K. Performance of concrete with low CO2 emission. Energies 13(17), 4328 (2020). https://doi.org/10.3390/en13174328.
  • 44. T. Baran, The use of waste and industrial by-products and possibilities of reducing CO2 emission in the cement industry-industrial trials. Cem. Wapno Beton 26(3), 169-184 (2021). https://doi.org/10.32047/CWB.2021.26.3.1.
  • 45. A. Naqi, J. G. Jang, J. G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability 11(2), 537 (2019). https://doi.org/10.3390/su11020537.
  • 46. Cembureau - The European Cement Association. CO2 costs in cement. Some calculations. Brussels, Belgium, (2021). https://cembureau.eu/media/jpthbmva/co2-costs-in-eu-cement-production-december-2021.pdf (accessed 15.03.2022).
  • 47. W. Shanks, C. F. Dunant, M. P. Drewniok, R. C. Lupton, A. Serrenho, J. M. Allwood, How much cement can we do without? Lessons from cement material flows in the UK. Resour. Conserv. Recycl. 41, 441-454 (2019). https://doi.org/10.1016/j.resconrec.2018.11.002.
  • 48. M. Sabău, D. V. Bompa, L. F. Silva, Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geosci. Frontiers 12(6), 101235 (2021). https://doi.org/10.1016/j.gsf.2021.101235.
  • 49. G. Bumanis, A. Korjakins, D. Bajare, Environmental Benefit of Alternative Binders in Construction Industry: Life Cycle Assessment. Environments 9(1), 6 (2022). https://doi.org/10.3390/environments9010006.
  • 50. M. Sparrevik, L. De Boer, O. Michelsen, C. Skaar, H. Knudson, A. M. Fet, Circular economy in the construction sector: advancing environmental performance through systemic and holistic thinking. Environ. Syst. Decis. 41(3), 392-400 (2021). https://doi.org/10.1007/s10669-021-09803-5.
  • 51. D. D’amato, J. Korhonen, Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecol. Econ. 188, 107143 (2021). https://doi.org/10.1016/j.ecolecon.2021.107143.
  • 52. H. Corvellec, A. Stowell, N. Johansson, Critiques of the circular economy. J. Ind. Ecol. 1-12 (2021). https://doi.org/10.1111/jiec.13187
  • 53. P. Stavropoulos, A. Papacharalampopoulos, K. Tzimanis, D. Petrides, G. Chryssolouris, On the Relationship between Circular and Innovation Approach to Economy. Sustainability 13(21), 11829 (2021). https://doi.org/10.3390/su132111829.
  • 54. P. Glavič, Evolution and Current Challenges of Sustainable Consumption and Production. Sustainability 13(16), 9379 (2021). https://doi.org/10.3390/su13169379.
  • 55. L. Czarnecki, D. Gemert, D. Innovation in construction materials engineering versus sustainable development. Bull. Pol. Acad. Sci. Techn. Sci. 65(6), 765-771 (2017). https://doi.org/10.1515/bpasts-2017-0083.
  • 56. K. Furtak, Contemporary challenges of science and technology - selected reflections. Cem. Wapno Beton 26(5), 413-430 (2021). https://doi.org/10.32047/cwb.2021.26.5.5.
  • 57. J. Michalak, External Thermal Insulation Composite Systems (ETICS) from Industry and Academia Perspective. Sustainability 13(24) 13705 (2021). https://doi.org/10.3390/su132413705.
  • 58. Building Research Institute (ITB). ITB-EPD General PCR Annex A v1.4 PN-EN 15804+A1:2014-04 Based. Warsaw, Poland, (2014).
  • 59. International Organization for Standardization (ISO). ISO 14025:2006 Environmental Labels and Declarations-Type III Environmental Declarations-Principles and Procedure. Geneva, Switzerland, (2006).
  • 60. Atlas. Environmental Product Declaration. Atlas ETICS External Thermal Insulation Composite System with Expanded Polystyrene Boards (EPS), Certificate No 078/2019, Atlas, Warsaw, Poland, (2019).
  • 61. Atlas. Environmental Product Declaration. Atlas ETICS External Thermal Insulation Composite System with Mineral Wool Boards (MW), Certificate No 080/2019, Atlas, Warsaw, Poland, (2019).
  • 62. Building Research Institute (ITB). National Technical Approval ITB AT-9090/2016 Zestaw Wyrobów do Wykonywania Ociepleń Ścian Zewnętrznych Budynków Systemem Atlas ETICS; Building Research Institute (ITB), Warsaw, Poland, (2016).
  • 63. Building Research Institute (ITB). National Technical Approval ITB AT-5-2930/2016 Zestaw Wyrobów do Wykonywania Ociepleń Ścian Zewnętrznych Budynków Systemem Atlas ROKER; Building Research Institute (ITB), Warsaw, Poland, (2016).
  • 64. R. Pasker, The European ETICS Market at a Glance: Facts, Figures, Latest Trends. In Proceedings of the 5th European ETICS Forum, Prague, Czech Republic, 16 September 2021; European Association for External Thermal Insulation Composite Systems (EAE), Berlin, Germany, (2021).
  • 65. Ustawa z dnia 25 czerwca 2015 r. o zmianie ustawy o wyrobach budowlanych, ustawy - Prawo budowlane oraz ustawy o zmianie ustawy o wyrobach budowlanych oraz ustawy o systemie oceny zgodności. Dz.U.2015.1165. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001165 (accessed 15.03.2022).
  • 66. H. Künzel, H. M. Künzel, K. Sedlbauer, Long-term performance of external thermal insulation systems (ETICS). Acta Archit. 5, 11-24 (2006).
  • 67. V. Kienzlen, H. Erhorn, H. Krapmeier, T. Lutzkendorf, J. Werner, A. Wagner, The Significance of Thermal Insulation Arguments Aimed at Overcoming Misunderstandings, 3rd ed.; Fraunhofer-Publica: Karlsruhe, Germany, str. 35 (2014).
  • 68. F. Lembo, F. P. R. Marino, The pathologies of the ETICS. In Recent Developments in Building Diagnosis Techniques, Springer: Singapore, pp. 37-49 (2016).
  • 69. V. Sulakatko, I. Lill, E. Witt, Methodological framework to assess the significance of External Thermal Insulation Composite System (ETICS) on-site activities. Energy Procedia 96, 446-454 (2016). https://doi.org/10.1016/j.egypro.2016.09.176.
  • 70. V. Sulakatko, E. Liisma, E. Soekov, Increasing construction quality of external thermal insulation composite system (ETICS) by revealing on-site degradation factors. Procedia Environ. Sci. 38, 765-772 (2017). https://doi.org/10.1016/j.proenv.2017.03.160.
  • 71. T. Kvande, N. Bakken, E. Bergheim, J. V. Thue, Durability of ETICS with rendering in Norway - Experimental and field investigations. Buildings 8, 93 (2018). https://doi.org/10.3390/buildings8070093.
  • 72. European Committee for Standardization (CEN). prEN 17237:2022 Thermal insulation products for buildings - External thermal insulation composite kits with a rendering system (ETIC kits) - Characteristics; European Committee for Standardization (CEN): Brussels, Belgium, 2022.
  • 73. European Organization for Technical Assessment (EOTA). European Assessment Document EAD 040083-00-04040 External Thermal Insulation Composite Systems (ETICS) with Renderings; European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2020.
  • 74. Instytut Techniki Budowlanej, Instytut Ceramiki i Materiałów Budowlanych, Instytut Mechanizacji Budownictwa i Górnictwa Skalnego. Warunki oceny właściwości użytkowych wyrobu budowlanego WO-KOT/04/01 wydanie 1: Złożone zestawy izolacji cieplnej z wyprawami tynkarskimi (ETICS) z zastosowaniem wyrobów z wełny mineralnej (MW). Warszawa, 2018.
  • 75. Instytut Techniki Budowlanej, Instytut Ceramiki i Materiałów Budowlanych, Instytut Mechanizacji Budownictwa i Górnictwa Skalnego. Warunki oceny właściwości użytkowych wyrobu budowlanego WO-KOT/04/02 wydanie 1: Złożone zestawy izolacji cieplnej z wyprawami tynkarskimi (ETICS) z zastosowaniem wyrobów ze styropianu (EPS). Warszawa, 2018.
  • 76. S. Czernik, M. Marcinek, B. Michałowski, M. Piasecki, J. Tomaszewska, J. Michalak, Environmental Footprint of Cementitious Adhesives-Components of ETICS. Sustainability 12(21), 8998 (2020). https://doi.org/10.3390/su12218998.
  • 77. T. Potrč, K. M. Rebec, F. Knez, R. Kunič, A. Legat, Environmental footprint of external thermal insulation composite systems with different insulation types. Energy Procedia 96, 312-322 (2016). https://doi.org/10.1016/j.egypro.2016.09.154.
  • 78. J. D. Silvestre, A. M. Castelo, J. J. Silva, J. M. de Brito, M. D. Pinheiro, Retrofitting a building’s envelope: Sustainability performance of ETICS with ICB or EPS. Appl. Sci. 9(7), 1285 (2019). https://doi.org/10.3390/app9071285.
  • 79. J. Michalak, S. Czernik, M. Marcinek, B. Michałowski, Environmental burdens of external thermal insulation systems. expanded polystyrene vs. mineral wool: Case study from Poland. Sustainability 12(11), 4532 (2020). https://doi.org/10.3390/su12114532.
  • 80. B. Michałowski, M. Marcinek, J. Tomaszewska, S. Czernik, M. Piasecki, R. Geryło, J. Michalak, Influence of rendering type on the environmental characteristics of expanded polystyrene-based external thermal insulation composite system. Buildings 10(3), 47 (2020). https://doi.org/10.3390/buildings10030047.
  • 81. C. Acar, I. Dincer, 3.1 Hydrogen Production. In Comprehensive Energy Systems, Elsevier, vol. 3, pp. 1-40 (2018).
  • 82. W. C. Lucato, J. C. da S. Santos, A. P. T. Pacchini, Measuring the Sustainability of a Manufacturing Process: A Conceptual Framework. Sustainability 10(1), 81 (2017). https://doi.org/10.3390/su10010081
  • 83. S. Ahmed, S. El-Sayegh, The challenges of sustainable construction projects delivery - evidence from the UAE. Archit. Eng. Des. Manag. 2022, 1-14 (2022). https://doi.org/10.1080/17452007.2022.2027224
  • 84. B. Michałowski, J. Michalak, Sustainability-oriented assessment of external thermal insulation composite systems: A case study from Poland. Cogent Eng. 8(1), 1943152 (2021). https://doi.org/10.1080/23311916.2021.1943152
  • 85. D. Głuszczuk, A. Raszkowski, Partnerstwo na rzecz procesów innowacyjnych w regionach Polski. [w] Regionalne i lokalne uwarunkowania rozwoju gospodarki Polski, red. E.Sobczak; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, str. 76-88 (2020).
  • 86. E. Sobczak, D. Głuszczuk, A. Raszkowski, Eco-Innovation and Innovation Level of the Economy as a Basis for the Typology of the EU Countries. Int. J. Environ. Res. Public Health 19(4), 2005 (2022). https://doi.org/10.3390/ijerph19042005.
  • 87. L. Czarnecki, M. Kaproń, Sustainable construction as a research area. International J. Soc. Mater. Eng. Resour. 17(2), 99-106 (2010). https://doi.org/10.5188/ijsmer.17.99
  • 88. F. Pomponi, R. Crawford, A. Stephan, J. Hart, B. D’Amico, The ‘building paradox’: research on building-related environmental effects requires global visibility and attention. Emerald Open Res. 2, 50 (2020). https://doi.org/10.35241/emeraldopenres.13838.1
  • 89. D. Kubečková, The Quality of ETICS in the Context of Energy and Social Changes (Case Study). Sustainability 14(6), 3135 (2022). https://doi.org/10.3390/su14063135
  • 90. R. I. C. Juarez, S. Finnegan, The environmental impact of cement production in Europe: A holistic review of existing EPDs. Clean. Environ. Syst. 3, 100053 (2021). https://doi.org/10.1016/j.cesys.2021.100053
  • 91. S. Parusheva, Y. Aleksandrova, Legislation and policies for digitalization supporting construction innovation. Eng. Sci. 59(1), 71-79 (2022). https://doi.org/10.7546/EngSci.LIX.22.01.06
  • 92. A. Koyamparambath, N. Adibi, C. Szablewski, S. A. Adibi, G. Sonnemann, Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability 14(6), 3699 (2022). https://doi.org/10.3390/su14063699
  • 93. T. Trigo, I. Flores-Colen, L. Silva, N. Vieira, A. Raimundo, G. Borsoi, Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures 6(4), 60 (20 21). https://doi.org/10.3390/infrastructures6040060
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-95248390-c0c1-424c-99d9-63e99fcf2072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.