Warianty tytułu
Języki publikacji
Abstrakty
A version of the Arzelà–Ascoli theorem for X being a σ-locally compact Hausdorff space is proved. The result is used in proving compactness of Fredholm, Hammerstein and Urysohn operators. Two fixed point theorems, for Hammerstein and Urysohn operators, are derived on the basis of Schauder fixed point theorem.
Czasopismo
Rocznik
Tom
Strony
153--161
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Institute of Mathematics, Łódź University of Technology, Wólczańska 215,90-924 Łódź, Poland
autor
- Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 90-924 Łódź, Poland
Bibliografia
- [1] J. J. Benedetto and W. Czaja, Integration and Modern Analysis, Birkhauser, Boston, 2009.
- [2] C. Corduneanu, integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
- [3] R. Engelking, General Topology, Polish Scientific Publishers, Warsaw, 1997.
- [4] W. Kołodziej, Wybrane rozdziały analizy matematycznej, Polish Scientific Publishers, Warsaw, 1982.
- [5] M. A. Krasnosielskii, P. P. Zabreiko, E. I. Pustylnik and P. E. Sbolevskii, Integral Operators in Spaces ofSummable Functions, Noordhoff International Publishing, Leyden, 1976.
- [6] J. R. Munkres, Topology, Prentice Hall, Upper Saddle River, 2000.
- [7] D. Porter and D. S. G. Stirling, Integral Equations, A Practical Treatment, from Spectral Theory to Applications, Cambridge University Press, Cambridge, 1990.
- [8] B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces, Ann. Polon. Math. 56 (1992), no. 2,103-121.
- [9] R. Stańczy, Hammerstein equation with an integral over noncompact domain, Ann. Polon. Math. 69 (1998), no. 1, 49-60.
- [10] S. M. Zemyan, The Classical Theory of Integral Equations, Birkhäuser, New York, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-94f0f2c2-c924-4689-8196-1c3ee2094356