Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | nr 146 | 57--68
Tytuł artykułu

A comparative analysis of popular modern small wind turbine design solutions in terms of estimated cost to power output ratio

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
International Symposium on Compressor & Turbine Flow Systems Theory & Application Areas "SYMKOM" (11 ; 20-23.10.2014 ; Łódź, Polska)
Języki publikacji
EN
Abstrakty
EN
In this paper a series of estimations has been performed in order to establish the actual cost-effectiveness of small wind turbines (SWTs). Different design solutions have been evaluated and based on their power curves and installation costs, using accurate wind data, a rate of investment return (ROI) period has been calculated for each one of them. The chosen turbines are: a classic three bladed horizontal axis wind turbine (HAWT), an advanced diffuser augmented HAWT and a Darrieus type vertical axis wind turbine (VAWT). The conclusions drawn from this study entertain the idea that from the economical point of view, a price reduction of SWT systems is more important, than aerodynamic complexity and efficiency.
Wydawca

Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Faculty of Mechanical Engineering, Dept. of Mechanics and Applied Computer Science, Military University of Technology, jbukala@wat.edu.pl
autor
  • Faculty of Mechanical Engineering, Dept. of Mechanics and Applied Computer Science, Military University of Technology, kdamaziak@wat.edu.pl
  • Faculty of Civil Engineering and Geodesy, Dept. of Applied Geomatics, Military University of Technology, kkroszczynski@wat.edu.pl
  • Faculty of Mechanical Engineering, Dept. of Mechanics and Applied Computer Science, Military University of Technology, mkrzeszowiec@wat.edu.pl
  • Faculty of Mechanical Engineering, Dept. of Mechanics and Applied Computer Science, Military University of Technology, jerzy.malachowski@wat.edu.pl
Bibliografia
  • [1] Woofenden I., Sargillo M., Is wind electricity right for you, Home power 143, June 2011 p. 52-61.
  • [2] ABB SACE - ABB S.p.A. L.V. Breakers: Wind power plants, Technical Application Papers. No 13, 2011.
  • [3] Skamarock, W., Klemp J.B., Dudhia J. (et. al), A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR, Boulder, 2008.
  • [4] Ohya, Y., & Karasudani, T., A shrouded wind turbine generating high output power with wind-lens technology, Energies, 3(4), 634-649.
  • [5] Energy Saving Trust. Location, location, location. Domestic small-scale wind field trial report., 06.2009.
  • [6] Sagrillo M., Sagrillo Power & Light, Back to the basics 2: Turbulence. Windletter, vol. 28, issue: 10 (2005).
  • [7] Manwell J. F., McGowan J. G., Rogers A. L.. Wind energy explained. Theory, design, and aplication. Second edition. John Wiley and Sons Ltd., 2009.
  • [8] Gasch R., Twele J.. Wind Power Plants. Fundamentals, Design, Construction and Operation. Second Edition. Springer, 2012.
  • [9] Burton T., Jenkins N., Sharpe D., Bossanyi E.. Wind Energy Handbook. Second Edition. John Wiley and Sons Ltd., 2011.
  • [10] Milivojevic N., Stamenkovic I., Schofield N.. Power and Energy Analysis of Commercial Small Wind Turbine Systems. IEEE, 2010.
  • [11] Wiśniewski G., Michałowska-Knap K., Koć S: Energetyka wiatrowa - stan aktualny i perspektywy rozwoju w Polsce. Warszawa, 2012.
  • [12] Polskie Stowarzyszenie Energetyki Wiatrowej: Ocena możliwości rozwoju i potencjału energetyki wiatrowej w Polsce do roku 2020.Szczecin, 2013.
  • [13] Caretto L.: Use of Probability Distribution Functions for Wind. Mechanical Engineering 483, Alternative Energy Engineering II, Northridge California State University, 2010.
  • [14] Sunderland K., Woolmington T., Blackledge J., Conlon M., Small wind turbines in turbulent (urban) enviroments: A consideration of normal and Weibull distribution for power prediction, Journal of Wind Engineering and Industrial Aerodynamics, Volume 121, October 2013, Pages 70-81.
  • [15] Manwell J.F., McGowan J. G., Rogers A. L.: Wind Energy Explained: Theory, Design and Application. John Wiley & Sons, Chichester, 2003.
  • [16] Elliott D., Infield D., An assessment of the Impact of Reduced Averaging Time on Small Wind Turbine Power Curves, Energy Capture Predictions and Turbulence Intensity Measurements, Wind Energy, Volume 17, Issue 2, pages 337-342.
  • [17] Lundquist J.K., Observational Needs for Wind Resource Assessment and Forecasting, American Meteorological Society Short Course on Wind Energy, 2010.
  • [18] Carpman N., Tubulence Intensity in Comples Enviroments and its Influence on Small Wind Turbines, University essay from Uppsala Universitet, 2011.
  • [19] IEC 61400-2. Small wind turbines.
  • [20] Lubitz W., Impact of ambient turbulence on performance of a small wind turbine, World Renewable Energy Congress, Wind Energy Applications Section, Sweden 2011.
  • [21] Barzyk G., Przyłączenie elektrowni wiatrowych do sieci energetycznej w kontekście uregulowań IRiESD, Konferencja PSEW, Warszawa, 2007.
  • [22] Al-Yahyai, S., Charabi, Y., & Gastli, A.. Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192-3198, 2010.
  • [23] Lange, M., Focken, U., Meyer, R., Denhardt, M., Ernst, B., & Berster, F. (2006, October). Optimal combination of different numerical weather models for improved wind power predictions. In Sixth International Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms (pp. 273-276).
  • [24] World Wind Energy Association, Small Wind World Report Update 2013, Bonn, 2013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-94c3848c-dd11-4706-bf3e-788be7e2193a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.