Warianty tytułu
Wieloczujnikowy system do monitorowania zanieczyszczeń wody w rzece
Języki publikacji
Abstrakty
Rivers play significant roles in communities, including as source of drinking water and for transportation and other daily activities. However, water pollution is a major problem in several communities, with significant negative consequences to health and well-being and socioeconomic development. This research, therefore, aimed to design and develop a system with multiple sensors to monitor river water pollution because most communities use river water in their daily activities. In the design and development of the system, multiple sensor nodes were installed for the detection of water pollution parameters such as temperature, Electrical Conductivity (EC), water pH, and Dissolved Oxygen (DO). The system was designed to monitor river water pollution parameters and send the information to the data centre (backend system). Arduino microcontroller was used to process and filter the data before sending to the backend system. Only valuable information was collected and kept in the database. Results show that the system was able to detect polluted water by showing the parameters of interest in a graph. The polluted water indicators were mostly contributed from residential waste and industries. This work has furnished progress in the development and validation of appropriate technologies for tackling river water pollution. In the future, WSNs sensors will be deployed in some areas and the results across the different areas will be compared. Furthermore, the Internet of Things (IoT) Technology will be used for data sharing and communication.
Rzeki odgrywają znaczącą rolę w społecznościach, w tym jako źródło wody pitnej oraz transportu i innych codziennych czynności. Zanieczyszczenie wody stanowi jednak poważny problem w wielu społecznościach, co ma znaczące negatywne konsekwencje dla zdrowia i dobrostanu oraz rozwoju społeczno-gospodarczego. Dlatego te badania miały na celu zaprojektowanie i opracowanie systemu z wieloma czujnikami do monitorowania zanieczyszczenia wód rzecznych, ponieważ większość społeczności wykorzystuje wodę rzeczną w codziennych czynnościach. Podczas projektowania i rozwoju systemu zainstalowano wiele węzłów czujnikowych do wykrywania parametrów zanieczyszczenia wody, takich jak temperatura, przewodność elektryczna (EC), pH wody i rozpuszczony tlen (DO). System został zaprojektowany do monitorowania parametrów zanieczyszczenia wód rzecznych i wysyłania informacji do centrum danych (system zaplecza). Mikrokontroler Arduino został użyty do przetwarzania i filtrowania danych przed wysłaniem do systemu zaplecza. Tylko cenne informacje zostały zebrane i przechowywane w bazie danych. Wyniki pokazują, że system był w stanie wykryć zanieczyszczoną wodę, pokazując interesujące parametry na wykresie. Wskaźniki zanieczyszczonej wody pochodziły głównie z odpadów mieszkaniowych i przemysłu. Prace te zapewniły postęp w opracowywaniu i zatwierdzaniu odpowiednich technologii przeciwdziałania zanieczyszczeniu wód rzecznych. W przyszłości czujniki WSN zostaną wdrożone w niektórych obszarach, a wyniki w różnych obszarach zostaną porównane. Ponadto do wymiany danych i komunikacji zostanie wykorzystana technologia Internetu przedmiotów (IoT).
Czasopismo
Rocznik
Tom
Strony
62--66
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Department of Informatics Engineering, Faculty of Engineering, Universitas Islam Riau, Pekanbaru, Indonesia 28284, evizal@eng.uir.ac.id
autor
- Center for Environmental Remote Sensing (CEReS) Chiba University, Chiba, Japan, hitoshi.irie@chiba-u.jp
autor
- Department of Informatics Engineering, Faculty of Engineering, Universitas Islam Riau, Pekanbaru, Indonesia 28284, srilistiarosa@eng.uir.ac.id
autor
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia 32610, mahmod.othman@utp.edu.my
Bibliografia
- [1] Y. Guo et al., "An Inversion-Based Fusion Method for Inland Water Remote Monitoring," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 12, pp. 5599-5611, 2016.
- [2] N. A. Cloete, R. Malekian, and L. Nair, "Design of Smart Sensors for Real-Time Water Quality Monitoring," IEEE Access, vol. 4, pp. 3975-3990, 2016.
- [3] Y. Wang, S. M. S. M. Rajib, C. Collins, and B. Grieve, "Low- Cost Turbidity Sensor for Low-Power Wireless Monitoring of Fresh-Water Courses," IEEE Sensors Journal, vol. 18, no. 11, pp. 4689-4696, 2018.
- [4] Marjolijn Woutersen et al., "Development and Validation of an On-LineWater Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring," MDPI Sensor, vol. 17, no. 2682, pp. 1-14, 2017.
- [5] L. Y. Li, H. Jaafar, and N. H. Ramli, "Preliminary Study of Water Quality Monitoring Based on WSN Technology," in 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), 2018, pp. 1-7.
- [6] E. A. Kadir, S. L. Rosa, and A. Yulianti, "Application of WSNs for Detection Land and Forest Fire in Riau Province Indonesia," in 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), 2018, pp. 25-28.
- [7] G. Lockridge, B. Dzwonkowski, R. Nelson, and S. Powers, "Development of a Low-Cost Arduino-Based Sonde for Coastal Applications," MDPI Sensor, vol. 16, no. 528, pp. 1-16, 2016.
- [8] T. Islam and Y. K. Lee, "A Two-Stage Localization Scheme with Partition Handling for Data Tagging in Underwater Acoustic Sensor Networks," MDPI Sensor, vol. 19, no. 2135, pp. 1-27, 2019.
- [9] E. A. Kadir, A. Siswanto, S. L. Rosa, A. Syukur, H. Irie, and M. Othman, "Smart Sensor Node of WSNs for River Water Pollution Monitoring System," in 2019 International Conference 66 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 4/2020 on Advanced Communication Technologies and Networking (CommNet), 2019, pp. 1-5.
- [10] F. Yuan, Y. Huang, X. Chen, and E. Cheng, "A Biological Sensor System Using Computer Vision for Water Quality Monitoring," IEEE Access, vol. 6, pp. 61535-61546, 2018.
- [11] W.-C. Lin, K. Brondum, C. W. Monroe, and M. A. Burns, "MultifunctionalWater Sensors for pH, ORP, and Conductivity Using Only Microfabricated Platinum Electrodes," MDPI Sensor, vol. 17, no. 1655, pp. 1-9, 2017.
- [12] Y. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong*, "A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications," IEEE Transactions on NanoBioscience, vol. 14, no. 8, pp. 811-817, 2015.
- [13] T. P. Lambrou, C. C. Anastasiou, C. G. Panayiotou, and M. M. Polycarpou, "A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems," IEEE Sensors Journal, vol. 14, no. 8, pp. 2765-2772, 2014.
- [14] J. Tian and Y. Wang, "A novel water pollution monitoring approach based on 3s technique," in 2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT), 2010, vol. 1, pp. 288-290.
- [15] M. Grossi, R. Lazzarini, M. Lanzoni, A. Pompei, D. Matteuzzi, and B. Riccò, "A Portable Sensor With Disposable Electrodes for Water Bacterial Quality Assessment," IEEE Sensors Journal, vol. 13, no. 5, pp. 1775-1782, 2013.
- [16] E. A. Kadir;, A. Efendi, and S. L. Rosa, "Application of LoRa WAN Sensor and IoT for Environmental Monitoring in Riau Province Indonesia," in 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2018), Malang, 2018: IEEE.
- [17] C. Doña, J. M. Sánchez, V. Caselles, J. A. Domínguez, and A. Camacho, "Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 5, pp. 1632-1641, 2014.
- [18] S. Olatinwo and T.-H. Joubert, "Optimizing the Energy and Throughput of a Water-Quality Monitoring System," Sensors, vol. 18, no. 4, p. 1198, 2018.
- [19] P. Teixidó, J. Gómez-Galán, F. Gómez-Bravo, T. Sánchez- Rodríguez, J. Alcina, and J. Aponte, "Low-Power Low-Cost Wireless Flood Sensor for Smart Home Systems," Sensors, vol. 18, no. 11, p. 3817, 2018.
- [20] F. D. V. B. Luna, E. d. l. R. Aguilar, J. S. Naranjo, and J. G. Jagüey, "Robotic System for Automation of Water Quality Monitoring and Feeding in Aquaculture Shadehouse," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1575-1589, 2017.
- [21] Z. Wu, J. Liu, J. Yu, and H. Fang, "Development of a Novel Robotic Dolphin and Its Application to Water Quality Monitoring," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2130-2140, 2017.
- [22] E. O’Connor, A. F. Smeaton, N. E. O’Connor, and F. Regan, "A Neural Network Approach to Smarter Sensor Networks for Water Quality Monitoring," MDPI Sensor, vol. 12, pp. 4605- 4632, 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-94a01eba-27b3-4729-91a7-42d3442d09c8