Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | No. 59 (3) | 350--364
Tytuł artykułu

Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A plethora of physical parameters, such as hydro-, litho- and morpho-dynamic characteristics, are essential for understanding the response of coastal systems to intense sea states in terms of sediment transport and shoreline evolution. Nowadays, numerical models are extensively applied to meet the above needs and support coastal planning and management. In the present work, a 2DH dynamic modelling system is used for simulating the hydrodynamic and meteorological/oceanographic characteristics of the Saronic Gulf, in order to examine circulation patterns and predict sediment transport phenomena under high wave conditions at the coast of Varkiza, a sandy beach in the southern Attica, Greece. Time series of wind and wave data were used as input at the open boundaries of the model domain while the model was calibrated and validated through (linear and directional) statistical measures with respect to in situ wave measurements, since there was lack of hydrodynamic data at the site of interest. The simulation period of the model was between January 3 and February 19, 2013, with consecutive high waves in-between. The good agreement of the numerical results from the wave and hydrodynamic model with in situ measurements confirmed the suitability of the model for the support of sediment transport rates at Varkiza coastal segment. Model results reveal that there is a counter-clockwise water circulation during high waves that contribute to the erosion of the examined beach, which is also confirmed by independent field measurements.
Wydawca

Czasopismo
Rocznik
Strony
350--364
Opis fizyczny
Bibliogr. 62 poz., fot., mapy, tab., wykr.
Twórcy
  • School of Naval Architecture & Marine Engineering, National Technical University of Athens, Athens, Greece, kbel@fluid.mech.ntua.gr
  • School of Naval Architecture & Marine Engineering, National Technical University of Athens, Athens, Greece
Bibliografia
  • [1] Amoudry, L. O., Souza, A. J., 2011. Deterministic coastal morphological and sediment transport modeling: a review and discussion. Rev. Geophys. 49 (2), RG2002, http://dx.doi.org/10.1029/2010RG000341.
  • [2] Aouiche, I., Daoudi, L., Anthony, E. J., Sedrati, M., Harti, A., Ziane, E., 2016. The impact of storms in the morphodynamic evolution of a human-impacted semi-sheltered beach (Agadir Bay, Morocco). J. Afr. Earth Sci. 115, 32-47.
  • [3] Archetti, R., Zanuttigh, B., 2010. Integrated monitoring of the hydromorphodynamics of a beach protected by low crested detached breakwaters. Coast. Eng. 57 (10), 879-891, http://dx.doi.org/10.1016/j.coastaleng.2010.05.002.
  • [4] Bai, Y., Wang, Z., Shen, H., 2003. Three-dimensional modelling of sediment transport and the effects of dredging in the Haihe Estuary. Estuar. Coast. Shelf Sci. 56 (1), 175-186, http://dx.doi.org/10.1016/S0272-7714(02)00155-5.
  • [5] Battjes, J. A., Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking random waves. In: Proceedings of the 16th Conference on Coastal Engineering, ASCE, Hamburg, Germany, 569-587.
  • [6] Bergillos, R. J., Rodríguez-Delgado, C., Ortega-Sánchez, M., 2017. Advances in management tools for modeling artificial nourishments in mixed beaches. J. Marine Syst. 172, 1-13, http://dx.doi.org/10.1016/j.jmarsys.2017.02.009.
  • [7] Bernabeu, A. M., Medina, R., Vidal, C., 2003. Wave reflection on natural beaches: an equilibrium beach profile model. Estuar. Coast. Shelf Sci. 57 (4), 577-585, http://dx.doi.org/10.1016/S0272-7714(02)00393-1.
  • [8] Callaghan, D. P., Roshanka, R., Andrew, S., 2009. Quantifying the storm erosion hazard for coastal planning. Coast. Eng. 56 (1), 90-93, http://dx.doi.org/10.1016/j.coastaleng.2008.10.003.
  • [9] Chen, J.-L., Shi, F., Hsu, T.-J., Kirby, J. T., 2014. NearCoM-TVD — a quasi-3D nearshore circulation and sediment transport model. Coast. Eng. 91, 200-212, http://dx.doi.org/10.1016/j.coastaleng.2014.06.002.
  • [10] Coco, G., Senechal, N., Rejas, A., Bryan, K. R., Capo, S., Parisot, J. P., Brown, J. A., MacMahan, J. H. M., 2014. Beach response to a sequence of extreme storms. Geomorphology 204, 493-501, http://dx.doi.org/10.1016/j.geomorph.2013.08.028.
  • [11] Cowell, P. J., Thom, B. G., 1994. Morphodynamics of coastal evolution. In: Carter, R. W. G., Woodroffe, C. D. (Eds.), Coastal Evolution: Late Quaternary Shoreline Morphodynamics. Cambridge Univ. Press, Cambridge, 517 pp.
  • [12] DHI, 2016a. MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic and Transport, Scientific documentation.
  • [13] DHI, 2016b. MIKE 21 Spectral Wave Module, Scientific documentation.
  • [14] Dibajnia, M., Nairn, R. B., Ross, P., 2004. Analysis of long-term sand accumulation at a harbor using 2DH numerical simulation. Coast. Eng. 51 (8-9), 863-882, http://dx.doi.org/10.1016/j.coasta-leng.2004.07.013.
  • [15] Dodd, N., Blondeaux, P., Calvete, D., de Swart, H. E., Falqués, A., Hulscher, S. J. M. H., Rózyński, G., Vittori, G., 2003. Understanding coastal morphodynamics using stability methods. J. Coastal Res. 19 (4), 849-865.
  • [16] El Kadi Abderrezzak, K., Die Moran, A., Tassi, P., Ata, R., Hervouet, J.-M., 2016. Modelling river bank erosion using a 2D depth-aver-aged numerical model of flow and non-cohesive, non-uniform sediment transport. Adv. Water Resour. 93, 75-88, http://dx.doi.org/10.1016/j.advwatres.2015.11.004.
  • [17] Eldeberky, Y., Battjes, J. A., 1996. Spectral modeling of wave breaking: application to Boussinesq equations. J. Geophys. Res. 101 (C1), 1253-1264, http://dx.doi.org/10.1029/95JC03219.
  • [18] Elfrink, B., Brøker, I., Deigaard, R., Hansen, E. A., Justesen, P., 1996. Modelling of 3D sediment transport in the surf zone. In: Proceedings of the 25th International Conference on Coastal Engineering, ASCE, Orlando, FL, USA, 3805-3817.
  • [19] Engelund, F., Fredsøe, J., 1976. A sediment transport model for straight alluvial channels. Hydrol. Res. 7 (5), 293-306.
  • [20] Ferreira, Ó., 2005. Storm groups versus extreme single storms: predicted erosion and management consequences. J. Coastal Res. 42, 221-227.
  • [21] Foteinis, S., 2014. Erosion of coastlines of Greece: assessment — responses. (Ph.D. thesis). Tech. Univ. Crete, School of Environmental Engineering (in Greek).
  • [22] Fredsøe, J., 1984. Turbulent boundary layers in wave-current motion. J. Hydraul. Eng.-ASCE 110 (8), 1103-1120, http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103).
  • [23] Gong, Z., Zhang, C.-K., Zuo, C.-B., Wu, W.-D., 2011. Sediment transport following water transfer from Yangtze River to Taihu Basin. Water Sci. Eng. 4 (4), 431-444, http://dx.doi.org/10.3882/j.issn.1674-2370.2011.04.007.
  • [24] Hanson, H., Aarninkhof, S., Capobianco, M., Jimenez, J. A., Larson, M., Nicholls, R. J., Plant, N. G., Southgate, H. N., Steetzel, H. J., Stive, M. J. F., de Vriend, H. J., 2003. Modelling of coastal evolution on yearly to decadal time scales. J. Coastal Res. 19 (4), 790-811.
  • [25] Hasselmann, K., 1974. On the spectral dissipation of ocean waves due to whitecapping. Bound.-Layer Meteorol. 6 (1), 107-127.
  • [26] Hasselmann, S., Hasselmann, K., Allender, J. H., Barnett, T. P., 1985. Computations and parameterizations of the nonlinear Energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 15, 1378-1391, http://dx.doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.
  • [27] Ikeda, S., Osawa, K., Akamatsu, Y., 2009. Sediment and nutrients transport in watershed and their impact on coastal environment. Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 85 (9), 374-390, http://dx.doi.org/10.2183/pjab.85.374.
  • [28] Janssen, P. A. E. M., 1989. Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19, 745-754, http://dx.doi.org/10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.
  • [29] Janssen, P. A. E. M., 1991. Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr. 21, 1631-1642, http://dx.doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.
  • [30] Janssen, P. A. E. M., 1992. Consequences of the effect of Surface gravity waves on the mean air flow. In: Banner, M. L., Grimshaw, R. H. J. (Eds.), Breaking Waves, International Union of Theoretical And Applied Mechanics (IUTAM) Symposium Sydney, Australia.
  • [31] Janssen, P. A. E. M., Lionello, P., Zambresky, L., 1989. On the interaction of wind and waves. Phil. Trans. R. Soc. A 329 (1604), 289-301, http://dx.doi.org/10.1098/rsta.1989.0077.
  • [32] Jara, M. S., González, M., Medina, R., 2015. Shoreline evolution model from a dynamic equilibrium beach profile. Coast. Eng. 99, 1-14, http://dx.doi.org/10.1016/j.coastaleng.2015.02.006.
  • [33] Jing-Jing, X., Fei, H., Zi-Niu, X., Xue-Ling, C., 2014. Bias correction in wind direction forecasting using the circular-circular regression method. Atmos. Oceanic Sci. Lett. 7 (2), 87-91, http://dx.doi.org/10.3878/j.issn.1674-2834.13.0057.
  • [34] Johnson, H. K., Kofoed-Hansen, H., 2000. Influence of bottom friction on sea surface roughness and its impact on shallow water wind wave modelling. J. Phys. Oceanogr. 30, 1743-1756, http://dx.doi.org/10.1175/1520-0485(2000)030<1743:IOBFOS>2.0.CO;2.
  • [35] Karathanasi, F. E., Soukissian, T. H., Axaopoulos, P. G., 2016. Calibration of wind directions in the Mediterranean Sea. In: Proceedings of the 26th International Ocean and Polar Engineering Conference (ISOPE) 1, Rhodes, Greece, 491-497.
  • [36] Karunarathna, H., Horrillo-Caraballo, J. M., Reeve, D. E., 2012. Prediction of cross-shore beach profile evolution using a diffusion type model. Cont. Shelf Res. 48, 157-166, http://dx.doi.org/10.1016/j.csr.2012.08.004.
  • [37] Karunarathna, H., Pender, D., Ranasinghe, R., Short, A. D., Reeve, D. E., 2014. The effects of storm clustering on beach profile variability. Mar. Geol. 348, 103-112, http://dx.doi.org/10.1016/j.margeo.2013.12.007.
  • [38] Komen, G. J., Cavaleri, L., Doneland, M., Hasselmann, K., Hasselmann, S., Janssen, P. A. E. M., 1994. Dynamics and Modeling of Ocean Waves, Cambridge Univ. Press, UK, 532 pp., http://dx.doi.org/10.1017/S0022112096220166.
  • [39] Kontoyiannis, H., 2010. Observations on the circulation of the Saronic Gulf: a Mediterranean embayment sea border of Athens, Greece. J. Geophys. Res. 115 (C6), 2156-2202, http://dx.doi.org/10.1029/2008JC005026.
  • [40] Larroudé, P., 2008. Methodology of seasonal morphological modelisation for nourishment strategies on a Mediterranean beach. Mar. Pollut. Bull. 57 (1-5), 47-52, http://dx.doi.org/10.1016/j.mar-polbul.2008.04.039.
  • [41] Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., Stelling, G. S., 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51 (8-9), 883-915, http://dx.doi.org/10.1016/j.coastaleng.2004.07.014.
  • [42] Li, M., Fernando, P. T., Pan, S., O'Connor, B. A., Daoyi Chen, D., 2007. Development of a quasi-3d numerical model for sediment transport prediction in the coastal region. J. Hydro-Environ. Res. 1 (2), 143-156, http://dx.doi.org/10.1016/j.jher.2007.09.001.
  • [43] Luo, S., Liu, Y., Jin, R., Zhang, J., Wei, W., 2016. A guide to coastal management: benefits and lessons learned of beach nourishment practices in China over the past two decades. Ocean Coast. Manage. 134, 207-215, http://dx.doi.org/10.1016/j.ocecoaman.2016.10.011.
  • [44] Masselink, G., Short, A. D., 1993. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. J. Coastal Res. 9 (3), 785-800.
  • [45] Mayerle, R., Narayanan, R., Etri, T., Wahab, A. K. A., 2015. A case study of sediment transport in the Paranagua Estuary Complex in Brazil. Ocean Eng. 106, 161-174, http://dx.doi.org/10.1016/j.oceaneng.2015.06.025.
  • [46] Nam, P. T., Larson, M., Hanson, H., Hoan, L. X., 2009. A numerical model of nearshore waves, currents, and sediment transport. Coast. Eng. 56 (11-12), 1084-1096, http://dx.doi.org/10.1016/j.coastaleng.2009.06.007.
  • [47] Neumann, B., Vafeidis, A. T., Zimmermann, J., Nicholls, R. J., 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLoS ONE 10 (6), e0131375, http://dx.doi.org/10.1371/journal.pone.0118571.
  • [48] Papadopoulos, A., Katsafados, P., Mavromatidis, E., Kallos, G., 2008. Assessing the skill of the POSEIDON-II weather forecasting system, Abstracts Books of the EuroGOOS 2008 Conference.
  • [49] Papanicolaou, A. N., Elhakeem, M., Krallis, G., Prakash, S., Edinger, J., 2008. Sediment transport modeling review — current and future developments. J. Hydraul. Eng.-ASCE 134, 1-14, http://dx.doi.org/10.1061/(ASCE)0733-9429(2008)134:1(1).
  • [50] Poorhosein, M., Afzalimehr, H., Sui, J., Singh, V. P., Azareh, S., 2014. Empirical bed load transport equations. Int. J. Hydraul. Eng. 3 (3), 93-101.
  • [51] Requejo, S., Medina, R., González, M., 2008. Development of a medium-long term beach evolution model. Coast. Eng. 55 (12), 1074-1088, http://dx.doi.org/10.1016/j.coastaleng.2008.04.005.
  • [52] Ruessink, B. G., Terwindt, J. H. J., 2000. The behaviour of nearshore bars on the time scale of years: a conceptual model. Mar. Geol. 163 (1-4), 289-302, http://dx.doi.org/10.1016/S0025-3227(99)00094-8.
  • [53] Samaras, A. G., Gaeta, M. G., Miquel, A. M., Archetti, R., 2016. Highresolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision suport and assessment. Nat. Hazards Earth Syst. Sci. 16 (6), 1499-1518, http://dx.doi.org/10.5194/nhess-16-1499-2016.
  • [54] Samaras, A. G., Koutitas, C. G., 2014. Comparison of three longshore sediment transport rate formulae in shoreline evolution modeling near stream mouths. Ocean Eng. 92, 255-266, http://dx.doi.org/10.1016/j.oceaneng.2014.10.005.
  • [55] Shengcheng, J. I., Ouahsine, A., Smaoui, H., Sergent, P., 2014. 3D modeling of sediment movement by ships-generated wakes in confined shipping channel. Int. J. Sediment Res. 29 (1), 49-58, http://dx.doi.org/10.1016/S1001-6279(14)60021-4.
  • [56] Simons, R. K., Canali, G. E., Anderson-Newton, G. T., Cotton, G. K., 2000. Sediment transport modeling: calibration, verification, and evaluation. J. Soil Contam. 9 (3), 261-289.
  • [57] Skanavis, V., 2013. Geological and anthropogenic factors in the formation of coastline: the case study of Varkiza — S. Attica. (Diploma Thesis). Tech. Univ. Crete, School of Mineral Resources Engineering (in Greek).
  • [58] Soukissian, T. H., Chronis, G., Nittis, K., 1999. POSEIDON: operational marine monitoring system for Greek seas. Sea Technol. 40 (7), 31-37.
  • [59] Sulis, A., Annis, A., 2014. Morphological response of a sandy shoreline to a natural obstacle at Sa Mesa Longa Beach, Italy. Coast. Eng. 84, 10-22, http://dx.doi.org/10.1016/j.coastaleng.2013.10.014.
  • [60] Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., Pilch, M., 2006. Calibration, validation, and sensitivity analysis: what's what. Reliab. Eng. Syst. Safe. 91 (10-11), 1331-1357, http://dx.doi.org/10.1016/j.ress.2005.11.031.
  • [61] Van Rijn, L. C., Ribberink, J. S., Van Der Werf, J., Walstra, D. J. R., 2013. Coastal sediment dynamics: recent advances and future research needs. J. Hydraul. Res. 51 (5), 475-493, http://dx.doi.org/10.1080/00221686.2013.849297.
  • [62] Weitz, J., Demlie, M., 2014. Conceptual modelling of groundwater-surface water interactions in the Lake Sibayi Catchment, Eastern South Africa. J. Afr. Earth Sci. 99 (Pt. II), 613-624, http://dx.doi.org/10.1016/j.jafrearsci.2013.11.018.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-947c1400-a67f-4bcf-af3f-9a7f0018b763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.