Warianty tytułu
Języki publikacji
Abstrakty
Evapotranspiration (ET) plays a key role in water cycle and energy balance, and the construction of large areas of vegetation in the Yellow River Basin (YRB) will cause an increase in regional ET and changes in water use in the basin. Based on GLEAM evapotranspiration products, meteorological stations and land use data, this study used slope trend analysis, Mann-Kendall (M-K) test and partial correlation analysis to analyse changes in evapotranspiration and water use in the YRB before and after reforestation from 1980 to 2019. The results showed that the annual average ET of the YRB from 1980 to 2019 ranged from 363 to 447 mm with an average change rate of 10.2 mm/10a. The actual evapotranspiration/potential evapotranspiration (ET/PET) growth rate of the YRB decreased after the Grain for Green Project (GGP), and the actual evapotranspiration/precipitation (ET/P) decreased extremely significantly. Water use efficiency in the YRB was significantly reduced, and grassland was subjected to greater water stress. This study provides scientific support for future water balance, landscape restoration, ecological protection and quality development of the YRB.
Czasopismo
Rocznik
Tom
Strony
341--356
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR, Yangling 712100, China, jiansq412@163.com
- Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
autor
- Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
autor
- Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
autor
- Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
Bibliografia
- 1. Ajjur SB, Al-Ghamdi SG (2021) Evapotranspiration and water availability response to climate change in the middle east and North Africa. Clim Change 166(3-4):1-18. https://doi.org/10.1007/ s10584-021-03122-z
- 2. Alcantara Costa J, Navarro Hevia J, Costa CAG, de Araújo JC (2021) Temporal dynamics of evapotranspiration in semiarid native forests in Brazil and Spain using remote sensing. Hydrol Process. https://doi.org/10.1002/hyp.14070
- 3. Andini N, Kim D, Chun JA (2020) Operational soil moisture modeling using a multi-stage approach based on the generalized complementary principle. Agr Water Manag. https://doi.org/10.1016/j. agwat.2020.106026
- 4. Bai M, Mo X, Liu S, Hu S (2019) Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China. Sci Total Environ 657:325-339. https://doi.org/10.1016/j.scitotenv.2018.11.360
- 5. Byun K, Liaqat UW, Choi M (2014) Dual-model approaches for evapotranspiration analyses over homo- and heterogeneous land surface conditions. Agric for Meteorol 197:169-187. https://doi.org/10. 1016/j.agrformet.2014.07.001
- 6. Cao Q, Liu Y, Georgescu M, Wu J (2020) Impacts of landscape changes on local and regional climate: a systematic review. Landscape Ecol 35(6):1269-1290. https://doi.org/10.1007/s10980-020-01015-7
- 7. Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, T0mmervik H, Bala G, Zhu Z, Nemani RR, Myneni RB (2019a) China and India lead in greening of the world through land-use management. Nat Sustain 2(2):122-129. https://doi.org/10.1038/s41893-019-0220-7
- 8. Chen L, Wang J, Wei W, Fu B, Wu D (2010) Effects of landscape restoration on soil water storage and water use in the Loess Plateau region, China. Forest Ecol Manag 259(7):1291-1298. https://doi.org/10.1016/j.foreco.2009.10.025
- 9. Chen P, Yi P, Xiong L, Yu Z, Aldahan A, Muscheler R, Jin H, Luo D, Possnert G, Wu M, Wan C, Zheng M (2019b) Use of Be-10 isotope to predict landscape development in the source area of the Yellow River (SAYR), Northeastern Qinghai-Tibet plateau. J Environ Radioactiv 203:187-199. https://doi.org/10.1016/j. jenvrad.2019.03.018
- 10. Dang S, Guo X, Zhang W, Yin H (2020) Analysis of temporal and spatial variations in actual evapotranspiration in the headwaters of the Yellow River based on remote sensing data. In: IOP conference series. Earth and environmental science 57(1). https:// doi.org/10.1088/1755-1315/571/1/012066
- 11. Feng X, Fu B, Piao S, Wang S, Ciais P, Zeng Z, Lu Y, Zeng Y, Li Y, Jiang X, Wu B (2016) Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Change 6(11):1019-1022. https://doi.org/10.1038/NCLIMATE3092
- 12. Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901-919. https://doi.org/10.1016/j.rse.2007.06. 025
- 13. Fu B, Wang S, Liu Y, Liu J, Liang W, Miao C (2017) Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Pl Sc 45(1):223-243. https://doi.org/10.1146/annurev-earth-063016-020552
- 14. Gao G, Fu B, Wang S, Liang W, Jiang X (2016) Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the budyko framework. Sci Total Environ 557:331-342. https://doi.org/10.1016/j.scitotenv.2016.03.019
- 15. Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agr Water Manag 69(1):1-11. https://doi.org/10.1016/j.agwat.2004.03.014
- 16. Han T, Lu H, Lv Y, Fu B (2021) Assessing the effects of vegetation cover changes on resource utilization and conservation from a systematic analysis aspect. J Clean Prod. https://doi.org/10.1016/j. jclepro.2021.126102
- 17. He Z, He J (2012) Spatio-temporal variation of vegetation cover based on SPOT-VGT in Yellow River Basin. Ecol Environ Sci 21(10):1655-1659. https://doi.org/10.16258/j.cnki.1674-5906(2012)10-1655-05
- 18. Hu Y, Li H, Wu D, Chen W, Zhao X, Hou M, Li A, Zhu Y (2021) LAI-indicated vegetation dynamic in ecologically fragile region: a case study in the three-north shelter forest program region of China. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.106932
- 19. Huang MB, Zhang L, Gallichand J (2003) Runoff responses to afforestation in a watershed of the Loess Plateau China. Hydrol Process 17(13):2599-2609. https://doi.org/10.1002/hyp.1281
- 20. Jiang Z, Yang Z, Zhang S, Liao C, Hu Z, Cao R, Wu H (2020) Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved shuttleworth-wallace model in the Yellow River Basin. J Environ Manag. https://doi.org/10. 1016/j.jenvman.2020.110310
- 21. Jin Z, Guo L, Lin H, Wang Y, Yu Y, Chu G, Zhang J (2018) Soil moisture response to rainfall on the Chinese Loess Plateau after a longterm vegetation rehabilitation. Hydrol Process 32(12):1738-1754. https://doi.org/10.1002/hyp.13143
- 22. Jin Z, Guo L, Yu Y, Luo D, Fan B, Chu G (2020) Storm runoff generation in headwater catchments on the Chinese Loess Plateau after long-term vegetation rehabilitation. Sci Total Environ. https://doi. org/10.1016/j.scitotenv.2020.141375
- 23. Kadić A, Denić-Jukić V, Jukić D (2018) Revealing hydrological relations of adjacent karst springs by partial correlation analysis. Hydrol Res 49(3):616-633. https://doi.org/10.2166/nh.2017.064
- 24. Khaled HH (2008) Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349(3-4):350-363. https://doi.org/10.1016/j.jhydrol.2007.11.009
- 25. Khan MS, Liaqat UW, Baik J, Choi M (2018) Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agr Forest Meteorol 252:256-268. https://doi.org/10.1016/j.agrfo rmet.2018.01.022
- 26. Li T, Xia J, Zhang L, She D, Wang G, Cheng L (2021) An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125516
- 27. Li Y, Liu C, Liu X, Liang K, Bai P, Feng Y (2016) Impact of the grain for green project on the land use/cover change in the middle Yellow River. J Nat Resour 31(12):2005-2020. https://doi.org/10. 11849/zrzyxb.20160073
- 28. Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W (2014) Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr Sin 69(01):3-14. https://doi.org/10.11821/dlxb201401001
- 29. Liu Q, Yang Z (2010) Quantitative estimation of the impact of climate change on actual evapotranspiration in the Yellow River Basin, China. J Hydrol 395(3-4):226-234. https://doi.org/10.1016/j.jhydr ol.2010.10.031
- 30. Liu W (2018) Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau. Hydrol Res 49(6):1977-1990. https://doi.org/10.2166/ nh.2018.008
- 31. Lv M, Ma Z, Li M, Zheng Z (2019) Quantitative analysis of terrestrial water storage changes under the grain for green program in the Yellow River Basin. J Geophys Res Atmos 124(3):1336-1351. https://doi.org/10.1029/2018JD029113
- 32. Ma Z, Yan N, Wu B, Stein A, Zhu W, Zeng H (2019) Variation in actual evapotranspiration following changes in climate and vegetation cover during an ecological restoration period (2000-2015) in the Loess Plateau, China. Sci Total Environ 689:534-545. https://doi. org/10.1016/j.scitotenv.2019.06.155
- 33. Mallick J, Talukdar S, Alsubih M, Salam R, Ahmed M, Kahla NB, Shamimuzzaman M (2021) Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor Appl Climatol 143(1-2):823-841. https://doi.org/10. 1007/s00704-020-03448-1
- 34. Martens B, de Jeu R, Verhoest N, Schuurmans H, Kleijer J, Miralles D (2018) Towards estimating land evaporation at field scales using GLEAM. Remote Sens Basel 10(11):1720. https://doi.org/10. 3390/rs10111720
- 35. Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM, Fernández-Prieto D, Beck HE, Dorigo WA, Verhoest NEC (2017) GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev 10(5):1903-1925. https://doi.org/10. 5194/gmd-10-1903-2017
- 36. Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15(2):453-469. https://doi.org/10.5194/hess-15-453-2011
- 37. Ojeda MGV, Rosa-Cánovas JJ, Romero-Jiménez E, Yeste P, Gámiz-Fortis SR, Castro-Díez Y, Esteban-Parra MJ (2020) The role of the surface evapotranspiration in regional climate modelling: evaluation and near-term future changes. Atmos Res. https://doi. org/10.1016/j.atmosres.2020.104867
- 38. Omer A, Ma Z, Zheng Z, Saleem F (2020) Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv. 2019.135428
- 39. Pei T, Wu X, Li X, Zhang Y, Shi F, Ma Y, Wang P, Zhang C (2017) Seasonal divergence in the sensitivity of evapotranspiration to climate and vegetation growth in the Yellow River Basin, China. J Geophys Res Biogeosci 122(1):103-118. https://doi.org/10.1002/ 2016JG003648
- 40. Qin G, Meng Z, Fu Y (2022) Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Sci Total Environ. https://doi.org/10.1016/j. scitotenv.2022.155479
- 41. Reichle RH, Koster RD, Lannoy DE, GJM, Forman BA, Liu Q, Mahanama SPP, Toure A, (2011) Assessment and enhancement of MERRA land surface hydrology estimates. J Climate 24(24):6322-6338. https://doi.org/10.1175/JCLI-D-10-05033.1
- 42. Sarkar A, Saha S, Sarkar D, Mondal P (2021) Variability and trend analysis of the rainfall of the past 119 (1901-2019) years using statistical techniques: a case study of Uttar Dinajpur, India. J Clim Change 7(2):49-61. https://doi.org/10.3233/JCC210011
- 43. Shao R, Zhang B, Su T, Long B, Cheng L, Xue Y, Yang W (2019) Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China. J Geophys Res Atmos 124(22):11783-11802. https://doi.org/10. 1029/2019JD031295
- 44. She D, Xia J, Zhang Y (2017) Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Sci Total Environ 607-608:1151-1162. https://doi. org/10.1016/j.scitotenv.2017.07.007
- 45. Tang R, Shao K, Li Z, Wu H, Tang B, Zhou G, Zhang L (2015) Multiscale validation of the 8-day MOD16 evapotranspiration product using flux data collected in China. Ieee J-Stars 8(4):1478-1486. https://doi.org/10.1109/JSTARS.2015.2420105
- 46. Trajkovic S (2010) Testing hourly reference evapotranspiration approaches using lysimeter measurements in a semiarid climate. Hydrol Res 41(1):38-49. https://doi.org/10.2166/nh.2010.015
- 47. Tuninetti M, Tamea S, Dalin C (2019) Water debt indicator reveals where agricultural water use exceeds sustainable levels. Water Resour Res 55(3):2464-2477. https://doi.org/10.1029/2018W R023146
- 48. Walls S, Binns AD, Levison J, Macritchie S (2020) Prediction of actual evapotranspiration by artificial neural network models using data from a Bowen ratio energy balance station. Neural Comput Appl 32(17):14001-14018. https://doi.org/10.1007/ s00521-020-04800-2
- 49. Wang F, Ge Q, Wang S, Li Q, Jones PD (2015) A new estimation of urbanization’s contribution to the warming trend in China. J Climate 28(22):8923-8938. https://doi.org/10.1175/ JCLI-D-14-00427.1
- 50. Wang G, Pan J, Shen C, Li S, Lu J, Lou D, Hagan D (2018a) Evaluation of evapotranspiration estimates in the Yellow River Basin against the water balance method. Water Sui 10(12):1884. https://doi.org/ 10.3390/w10121884
- 51. Wang K, Wang Z, Xiao P, Wang T (2022) Assessment on the impact of climate and the changes of underlying surface on the evapotranspiration in the Loess Plateau. J Soil Water Conserv 36(3):166-172. https://doi.org/10.13870/j.cnki.stbcxb.2022.03.024
- 52. Wang X, Xiao F, Feng X, Fu B, Zhou Z, Chan C (2018b) Soil conservation on the Loess Plateau and the regional effect: impact of the ‘Grain for Green’ project. Earth Env Sci T R so 109(3-4):461-471. https://doi.org/10.1017/S1755691018000634
- 53. Wang Y, Li X, Shi F, Zhang S, Wu X (2019) The Grain for Green Project intensifies evapotranspiration in the revegetation area of the Loess Plateau in China. Chinese Sci Bull 64(5-6):588-589. https://doi.org/10.1360/n972018-00515
- 54. Wei W, Wang B, Niu X (2020) Soil erosion reduction by grain for green project in desertification areas of Northern China. Forests. https:// doi.org/10.3390/f11040473
- 55. Wu H, Guo B, Xue H, Zang W, Han B, Yang F, Lu Y, Wei C (2021) What are the dominant influencing factors on the soil erosion evolution process in the Yellow River Basin? Earth Sci Inform. https://doi.org/10.1007/s12145-021-00655-w
- 56. Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol 28(6):999-1023. https://doi.org/10.1007/s10980-013-9894-9
- 57. Xu S (2019) Temporal and spatial characteristics of the change of cultivated land resources in the black soil region of Heilongjiang Province (China). Sustain Basel 11(1):38. https://doi.org/10.3390/ su11010038
- 58. Xu S, Yu Z, Yang C, Ji X, Zhang K (2018) Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agr Forest Meteorol 263:118-129. https://doi.org/10.1016/j.agrformet.2018. 08.010
- 59. Yang X, Yong B, Ren L, Zhang Y, Long D (2017) Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. Int J Remote Sens 38(20):5688-5709. https://doi.org/10.1080/01431161.2017.1346400
- 60. Yang X, Yong B, Yin Y, Zhang Y (2018) Spatio-temporal changes in evapotranspiration over China using GLEAM_V3.0a products (1980-2014). Hydrol Res 49(5):1330-1348. https://doi.org/10. 2166/nh.2018.173
- 61. Zhang R, Lu J (2021) Simulation of land use pattern evolution from a multi-scenario perspective: a case study of Suzhou City in Anhui Province, China. Int J Env Res Pub He 18(3):921. https://doi.org/ 10.3390/ijerph18030921
- 62. Zhao F, Ma S, Wu Y, Qiu L, Wang W, Lian Y, Chen J, Sivakumar B (2022) The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agr Forest Meteorol. https://doi.org/10.1016/j.agrformet.2022. 108842
- 63. Zhuo Y, Zhao H, Wei M, Sui X, Liu H (2021) Temporal and spatial changes of pan evaporation and its influence factors in the Yellow River Basin in recent 59 years. Yellow River 43(07):28-34. https://doi.org/10.3969/j.issn.1000-1379.2021.07.006
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-947bf44e-74e1-4a79-9e68-f466a886d14a